Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Mixed-Element Grids

Eric J. Nielsen Computational AeroSciences Branch NASA Langley Research Center

Boris Diskin National Institute of Aerospace

http://fun3d.larc.nasa.gov

Motivation

- Adjoint methods provide very efficient and discretely consistent sensitivity analysis for PDE's
- Presented general URANS design capability for dynamic grids in 2009
- Extension to dynamic overset grids opens up many new applications for optimization, especially those involving large relative motions
 - Rotorcraft
 - Store/stage-separation problems
 - Wind energy devices
 - Biologically-inspired configurations
 - Turbomachinery
- Many other exciting opportunities
 - Error estimation
 - Rigorous mesh adaptation
 - Uncertainty quantification

<u>Goal:</u> Adjoint-based design for compressible/incompressible URANS on dynamic overset grids, amenable to massively parallel HPC environments

FUN3D Overview

Effort Initiated in Late 1980's

Courtesy SpaceX

- Supports numerous internal/external efforts across speed range
- Solves 2D/3D steady/unsteady RANS equations on dynamic overset mixed-element grids using node-based finite-volume
- Discretely consistent adjoint formulation for design
 optimization, error estimation, and mesh adaptation
- Automated complex variable formulation for forward differentiation
- Scalable end-to-end paradigm demonstrated to ~50,000 cores using as many as 2 billion points / 12 billion elements
- Produces visualization data concurrently: surfaces, volumes, slices, schlierens, isosurfaces, etc; DOE VisIt also integrated
- Testing framework performs 24/7 regression testing, monitors accuracy and performance

NASA/Gulfstream Partnership Effort on Airframe Noise Research

Courtesy US Army

General Approach

Based on the governing equations for the flow field and component grids, the discrete adjoint equations are derived and implemented

Governing equations for flow field

- Solve points use the URANS equations
- *Fringe* points use interpolants to compute data from values on another grid
- Hole and orphan points use pseudo-Laplacian operators to average surrounding data
- Nature of each point may change in time

Governing equations for component grids

- May specify rigid motion according to 4x4 transform matrices
- May specify deformations according to linear elasticity relations

Parent-child motion using rigid and deforming mesh mechanics

- May specify both rigid motions *and* elastic deformation
- General parent-child motions may also be specified

Full details of formulation available in AIAA-2012-0554

Background / Status of Adjoint Capabilities

Presented basic approach on tetrahedral grid systems in January 2012; This talk covers the extension to general mixed-element grids

Euler Fluxes

- Extension to full UMUSCL reconstruction

Viscous Fluxes

- Extension to include edge-based augmentation for Green-Gauss gradients

Turbulence Model

- Similar modifications for convection, diffusion, source terms
- Linearization of distance function on quads

Boundary Conditions

- Extension to quads

Dynamic Mesh Infrastructure

- Linearization of face speeds and geometric conservation law on other element types

Overset Mesh Infrastructure

- Sensitivities for general nonlinear interpolation formulas

Nonlinear Interpolations

Based on DiRTlib Approach of Noack

Hexahedron

- Evaluating these expressions at receptor location and donor element vertices yields a nonlinear set of equations for (ξ, η, ζ)
- System solved using Newton's method
- Sensitivities ∂(ξ, η, ζ)/ ∂(x,y,z) required for adjoint obtained by differentiating this procedure

Verification of Implementation

Problem Definition

- Fully turbulent flow: $M_{\infty}=0.1$, $\alpha=2^{\circ}$, Re=1M, $\mu=0.12$
- Composite grid consists of six component grids
- All verification cases run on 360 cores

Component	Topology	Motion	Motion Paradigm	Ancestry
Domain	Hex (Cartesian)	Inertial	Static	Great-grandparent
Fuselage	Prz/pyr/tet	Rotation, translation	Rigid	Grandparent
Blades	Tet	Azimuthal rotation	Rigid	Parent
Blades	-	1º vertical oscillatory rotation about hub	Deforming	Child
Total Composite Grid	1,033,243 nodes 3,190,160 elements Hex/prz/pyr/tet	-	Deforming	Four generations

Verification of Implementation

Compressible Results Shown; Incompressible Also Available

Adjoint ResultComplex Variable Result (ε =1x10-50)All equation sets converged to machine precision

	$\partial C_{_L}/\partial \mathbf{D}$ After 5 Physical Time Steps					
Design Variable	BDF1	BDF2	BDF2opt	BDF3		
Angle of Attack	0.032387388401060	0.0323908348524 <u>70</u>	0.03238296902522 <u>4</u>	0.03237496072847 <u>2</u>		
	0.032387388401060	0.0323908348524 <u>68</u>	0.03238296902522 <u>3</u>	0.03237496072847 <u>1</u>		
Rot Rate	0.0490109170095 <u>87</u>	0.0493030589899 <u>82</u>	0.0493927874798 <u>50</u>	0.0495051030439 <u>20</u>		
Blade 1	0.0490109170095 <u>99</u>	0.0493030589899 <u>96</u>	0.0493927874798 <u>63</u>	0.0495051030439 <u>32</u>		
Shape	-0.004741396075 <u>215</u>	-0.005822463933 <u>444</u>	-0.005891431208 <u>194</u>	-0.0060049763 <u>30078</u>		
Blade 2	-0.004741396075 <u>140</u>	-0.005822463933 <u>378</u>	-0.005891431208 <u>081</u>	-0.0060049763 <u>29965</u>		
Flap Freq	-0.11789893955198 <u>8</u>	-0.1178194157242 <u>22</u>	-0.1177669268359 <u>91</u>	-0.11770385752523 <u>7</u>		
Blade 3	-0.11789893955198 <u>6</u>	-0.1178194157242 <u>17</u>	-0.1177669268359 <u>85</u>	-0.11770385752523 <u>2</u>		
Rot Rate	0.069017024693 <u>610</u>	0.064234646041 <u>659</u>	0.06446855976 <u>6846</u>	0.064688175664 <u>501</u>		
Fuselage	0.069017024693 <u>502</u>	0.064234646041 <u>451</u>	0.06446855976 <u>4283</u>	0.064688175664 <u>242</u>		
Trans Rate	-0.00233794491307 <u>1</u>	-0.002888267191 <u>799</u>	-0.00290947974130 <u>4</u>	-0.0029407035148 <u>42</u>		
Fuselage	-0.00233794491307 <u>2</u>	-0.002888267191 <u>802</u>	-0.00290947974130 <u>5</u>	-0.0029407035148 <u>57</u>		
Shape	-0.000035249806854	-0.000039222298162	-0.000039485944155	-0.000039831885096		
Fuselage	-0.000035249806854	-0.000039222298162	-0.000039485944155	-0.000039831885096		

Large-Scale Test Cases

- Focus here is on performance of design methodology, not flow physics
- Results use tetrahedral grids; mixed-element cases to be performed shortly
- All cases shown run on SGI ICE system with parallel file system
 - 160 dual-socket hex-core nodes run fully dense total of 1,920 cores
- Solution of unsteady adjoint problem requires I/O of flow solution at every time step
 - Extensive optimization of I/O paradigm in previous work
 - Relies on parallel I/O of individual unformatted direct-access files
 - Asynchronous read/writes to mask I/O behind computations
 - Each flow field solution shown here consists of ~1 TB of data

Implementation handles deforming bodies; however, such cases are typically driven by other coupled disciplines (e.g., structures).

Current formulation does not address coupling, so all cases shown are forced motions

Biologically-Inspired Flapping Wing

- Simple wing geometry with kinematic motion based on Hawkmoth insect
 - Screen represents plane of symmetry
- Composite mesh totals 8,355,344 nodes / 49,088,120 tetrahedra
- Wing operates at 26 Hz in quiescent conditions with *Re*=1,280
- Governing equations: incompressible laminar N-S
- Kinematics consist of $\pm 60^{\circ}$ sweeping and $\pm 45^{\circ}$ feathering motions
- Net result of motion is a thrust force in the upward direction
- BDF2opt scheme run for 5 periods with 50 subiterations and 250 steps/period

Motion transform matrix \mathbf{T}^n specified via user-defined kinematics interface: 0.8 $\theta_{r}^{n} = A_{r} \left[\cos(\omega_{1,r}t) - 1 \right] + B_{r} \sin(\omega_{2,r}t) \Longrightarrow \mathbf{T}_{r}^{n}$ Cost Function Interval 0.6 $\theta_{v}^{n} = A_{v} \left[\cos(\omega_{1v}t) - 1 \right] + B_{v} \sin(\omega_{2v}t) \Longrightarrow \mathbf{T}_{v}^{n}$ $\theta_z^n = A_z \left[\cos(\omega_{1z}t) - 1 \right] + B_z \sin(\omega_{2z}t) \Longrightarrow \mathbf{T}_z^n$ **ں**^{- 0.4} 0.2 $\mathbf{T}^n = \mathbf{T}_z^n \mathbf{T}_v^n \mathbf{T}_x^n$ Ω 200 400 600 800 1000 1200

Thrust profile shows 2/cyc behavior

Goal is to maximize \overline{C}_T over final period using two different objective functions:

Time Step

$$f = \sum_{n=1,001}^{1,250} \left(C_T^n - 5.0\right)^2 \Delta t \qquad \qquad f = \left[\left(\frac{1}{250}\sum_{n=1,001}^{1,250} C_T^n\right) - 5.0\right]^2 \Delta t$$

Distribution function Time-average function

Design variables: 3 coords of rotation center, 12 kinematic parameters A, B, ω_1 , ω_2

Biologically-Inspired Flapping Wing Problem Definition

Biologically-Inspired Flapping Wing

Results

- Very moderate changes to all design variables
- Both designs now yield three peaks
 in cost interval
- Shape optimization using 88 parameters describing twist/shear/thickness/camber also attempted; opposing effects during sweeping negate improvements

	\overline{C}_{T}	Flow Solves (4 hrs)	Adjoint Solves (3 hrs)	Total Time
Baseline	0.127	-	-	-
Distribution Function	0.207	22	10	5 days (227,000 CPU hrs)
Time-average Function	0.265	25	8	5+ days (238,000 CPU hrs)

Biologically-Inspired Flapping Wing

Baseline and Optimal Flow Fields

Isosurfaces of Vorticity Colored by Pressure

Baseline

Optimal (Time-Average Function)

Overview

- Composite grid consists of 9,262,941 nodes / 54,642,499 tetrahedra
- Compressible RANS: M_{tip} =0.64, Re_{tip} =7.3M, µ=0.37, α=0.0^o
- BDF2opt scheme run for 2 revs with 15 subiterations per time step
- Time step corresponds to 1° of rotor rotation
- Blade pitch has child motion governed by collective and cyclic control inputs:

$$\theta = \theta_c + \theta_{1c} \cos \psi + \theta_{1s} \sin \psi$$
Blade \uparrow \uparrow \uparrow \uparrow \uparrow Longitudinal cyclic \downarrow Lateral cyclic \downarrow Longitudinal cyclic \downarrow

• Baseline value of all control inputs is zero

Problem Definition

- Baseline conditions yield untrimmed flight with \overline{C}_{L} =0.023 over second rev
- Objective is to maximize \overline{C}_L while satisfying trim constraints over second rev:

$$\min f = \left[\left(\frac{1}{360} \sum_{n=361}^{720} C_L^n \right) - 2.0 \right]^2 \Delta t \quad \text{such that} \qquad \begin{array}{l} g_1 = \frac{1}{360} \sum_{n=361}^{720} C_{M_x}^n \Delta t = 0 \\ g_2 = \frac{1}{360} \sum_{n=361}^{720} C_{M_y}^n \Delta t = 0 \end{array}$$

- Separate adjoint solutions required for all three functions
- 67 design variables include 64 thickness and camber variables across the blade planform, plus collective and cyclic control inputs up to $\pm 7^{\circ}$
- Fuselage shape could also be designed, but not pursued here (unknown constraints)

Results

- Feasible region is quickly located
- Both moment constraints are satisfied within tolerance at the optimal solution
- Final controls: $\theta_c = 6.71^{\circ}$, $\theta_{1c} = 2.58^{\circ}$, $\theta_{1s} = -7.00^{\circ}$

	$\bar{C}_{\scriptscriptstyle L}$	Flow Solves (2 hrs)	Adjoint Solves (3 hrs)	Total Time
Baseline	0.023	-	-	-
Design	0.103	4	4	0.8 days (38,400 CPU hrs)

Results

Interpretation of Adjoint Solutions

Flow Propagation Direction Adjoint Propagation Direction

Helicopter

Wind Turbine

Click for Isosurface Animation

Animations shown in reverse physical time

- Adjoint shows sensitivity of objective function to local disturbances in space and time: $\partial f/\partial \mathbf{R}$
- Solution can be used for sensitivity analysis as done here
- May also be used to perform rigorous error estimation and mesh adaptation
 - Traditional feature-based techniques do not identify such regions

Summary and Future Work

Developed adjoint-based design methodology for URANS simulations on dynamic overset grids in HPC environments

- Formulation
- Implementation
- Verification
- Applications
- Locally optimal, checkpointing techniques
- Multi-fidelity optimization algorithms
- Convergence acceleration schemes
- Simultaneous adjoint-based adaptation & design
- Extension of adjoint methods to MDO problems
- Continued leverage of computer science, software development, and HPC advancements

Also in AIAA-2012-0554: Wind turbine optimization on 2,880 cores using mesh with 87 million elements