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Motivation

• Adjoint methods provide very efficient and discretely                                       
consistent sensitivity analysis for PDE’s

• Presented general URANS design capability for dynamic                                        
grids in 2009

• Extension to dynamic overset grids opens up many new                              
applications for optimization, especially those involving                                           
large relative motions

- Rotorcraft

- Store/stage-separation problems

- Wind energy devices

- Biologically-inspired configurations

- Turbomachinery

• Many other exciting opportunities

- Error estimation

- Rigorous mesh adaptation

- Uncertainty quantification

Goal: Adjoint-based design for compressible/incompressible URANS on 
dynamic overset grids, amenable to massively parallel HPC environments



FUN3D Overview
Effort Initiated in Late 1980’s

• Supports numerous internal/external efforts across speed range

• Solves 2D/3D steady/unsteady RANS equations on dynamic 
overset mixed-element grids using node-based finite-volume

• Discretely consistent adjoint formulation for design       
optimization, error estimation, and mesh adaptation

• Automated complex variable formulation for forward differentiation

• Scalable end-to-end paradigm demonstrated to ~50,000 cores 
using as many as 2 billion points / 12 billion elements

• Produces visualization data concurrently: surfaces, volumes, 
slices, schlierens, isosurfaces, etc; DOE VisIt also integrated

• Testing framework performs 24/7 regression testing,           
monitors accuracy and performance
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General Approach

Based on the governing equations for the flow field and component grids,

the discrete adjoint equations are derived and implemented

Full details of formulation available in AIAA-2012-0554

Governing equations for flow field

• Solve points use the URANS equations

• Fringe points use interpolants to compute                                                                  
data from values on another grid

• Hole and orphan points use pseudo-Laplacian
operators to average surrounding data

• Nature of each point may change in time

Governing equations for component grids

• May specify rigid motion according to 4x4                                                          
transform matrices

• May specify deformations according to linear                                                      
elasticity relations

• May specify both rigid motions and elastic deformation

• General parent-child motions may also be specified

Parent-child motion using rigid and

deforming mesh mechanics



Background / Status of Adjoint Capabilities

Presented basic approach on tetrahedral grid systems in January 2012;

This talk covers the extension to general mixed-element grids

Euler Fluxes

- Extension to full UMUSCL reconstruction

Viscous Fluxes

- Extension to include edge-based augmentation for Green-Gauss gradients

Turbulence Model

- Similar modifications for convection, diffusion, source terms

- Linearization of distance function on quads

Boundary Conditions

- Extension to quads

Dynamic Mesh Infrastructure

- Linearization of face speeds and geometric conservation law on other element types

Overset Mesh Infrastructure

- Sensitivities for general nonlinear interpolation formulas



Nonlinear Interpolations
Based on DiRTlib Approach of Noack
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• Evaluating these expressions at receptor location and donor element vertices 

yields a nonlinear set of equations for (ξ,η,ζ)

• System solved using Newton’s method

• Sensitivities ∂(ξ,η,ζ)/ ∂(x,y,z) required for adjoint obtained by differentiating this 
procedure

Tetrahedron Pyramid Prism

Hexahedron



Verification of Implementation
Problem Definition

• Fully turbulent flow: M
∞
=0.1, α=2º, Re=1M, µ=0.12

• Composite grid consists of six component grids

• All verification cases run on 360 cores

Component Topology Motion Motion Paradigm Ancestry

Domain Hex (Cartesian) Inertial Static Great-grandparent

Fuselage Prz/pyr/tet Rotation, translation Rigid Grandparent

Blades Tet Azimuthal rotation Rigid Parent

Blades -
1º vertical oscillatory
rotation about hub

Deforming Child

Total Composite Grid
1,033,243 nodes

3,190,160 elements
Hex/prz/pyr/tet

- Deforming Four generations



Verification of Implementation
Compressible Results Shown; Incompressible Also Available

After 5 Physical Time Steps

Design Variable BDF1 BDF2 BDF2opt BDF3

Angle of Attack
0.032387388401060
0.032387388401060

0.032390834852470
0.032390834852468

0.032382969025224
0.032382969025223

0.032374960728472
0.032374960728471

Rot Rate

Blade 1
0.049010917009587
0.049010917009599

0.049303058989982
0.049303058989996

0.049392787479850
0.049392787479863

0.049505103043920
0.049505103043932

Shape

Blade 2
-0.004741396075215
-0.004741396075140

-0.005822463933444
-0.005822463933378

-0.005891431208194
-0.005891431208081

-0.006004976330078
-0.006004976329965

Flap Freq

Blade 3
-0.117898939551988
-0.117898939551986

-0.117819415724222
-0.117819415724217

-0.117766926835991
-0.117766926835985

-0.117703857525237
-0.117703857525232

Rot Rate

Fuselage
0.069017024693610
0.069017024693502

0.064234646041659
0.064234646041451

0.064468559766846
0.064468559764283

0.064688175664501
0.064688175664242

Trans Rate

Fuselage
-0.002337944913071
-0.002337944913072

-0.002888267191799
-0.002888267191802

-0.002909479741304
-0.002909479741305

-0.002940703514842
-0.002940703514857

Shape

Fuselage
-0.000035249806854
-0.000035249806854

-0.000039222298162
-0.000039222298162

-0.000039485944155
-0.000039485944155

-0.000039831885096
-0.000039831885096

Adjoint Result Complex Variable Result (ε=1x10-50)

All equation sets converged to machine precision

L
C∂ ∂D



Large-Scale Test Cases

• Focus here is on performance of design methodology, not flow physics

• Results use tetrahedral grids; mixed-element cases to be performed shortly

• All cases shown run on SGI ICE system with parallel file system

– 160 dual-socket hex-core nodes run fully dense – total of 1,920 cores

• Solution of unsteady adjoint problem requires I/O of flow solution at every 

time step

– Extensive optimization of I/O paradigm in previous work

• Relies on parallel I/O of individual unformatted direct-access files

• Asynchronous read/writes to mask I/O behind computations

– Each flow field solution shown here consists of ~1 TB of data

Implementation handles deforming bodies; however, such cases are 

typically driven by other coupled disciplines (e.g., structures).

Current formulation does not address coupling,

so all cases shown are forced motions



Biologically-Inspired Flapping Wing
Overview

• Simple wing geometry with kinematic motion based on Hawkmoth insect

- Screen represents plane of symmetry

• Composite mesh totals 8,355,344 nodes / 49,088,120 tetrahedra

• Wing operates at 26 Hz in quiescent conditions with Re=1,280

• Governing equations: incompressible laminar N-S

• Kinematics consist of ±60º sweeping and ±45º feathering motions

• Net result of motion is a thrust force in the upward direction

• BDF2opt scheme run for 5 periods with 50 subiterations and 250 steps/period

Mesh, problem statement courtesy John Moore (MIT/AFRL)



Biologically-Inspired Flapping Wing
Problem Definition

• Motion transform matrix Tn specified via                                                             

user-defined kinematics interface:

• Thrust profile shows 2/cyc behavior

( )
1,250

2

1,001

5.0
n

T

n

f C t
=

= − ∆∑
2

1,250

1,001

1
5.0

250

n

T

n

f C t
=

  
= − ∆  
  

∑
Distribution function Time-average function

Goal is to maximize      over final period using two different objective functions:TC

Design variables: 3 coords of rotation center, 12 kinematic parameters A, B, ω1, ω2
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Biologically-Inspired Flapping Wing
Results

• Very moderate changes to all 
design variables

• Both designs now yield three peaks 
in cost interval

• Shape optimization using 88 
parameters describing 
twist/shear/thickness/camber also 
attempted; opposing effects during 
sweeping negate improvements

Flow
Solves
(4 hrs)

Adjoint
Solves

(3 hrs)

Total Time

Baseline 0.127 - - -

Distribution 
Function

0.207 22 10
5 days

(227,000 CPU hrs)

Time-average

Function
0.265 25 8

5+ days

(238,000 CPU hrs)

TC



Biologically-Inspired Flapping Wing
Baseline and Optimal Flow Fields

Isosurfaces of Vorticity Colored by Pressure

Baseline
Optimal

(Time-Average Function)



UH-60A Blackhawk Helicopter
Overview

• Composite grid consists of 9,262,941 nodes / 54,642,499 tetrahedra

• Compressible RANS:  Mtip=0.64, Retip=7.3M, µ=0.37, α=0.0º

• BDF2opt scheme run for 2 revs with 15 subiterations per time step

• Time step corresponds to 1º of rotor rotation

• Blade pitch has child motion governed by collective and cyclic control inputs:

• Baseline value of all control inputs is zero

1 1
cos sinc c sθ θ θ ψ θ ψ= + +

Blade
pitch Collective Lateral cyclic

Longitudinal cyclic



UH-60A Blackhawk Helicopter
Problem Definition

• Baseline conditions yield untrimmed flight with     =0.023 over second rev

• Objective is to maximize      while satisfying trim constraints over second rev:

• Separate adjoint solutions required for all three functions

• 67 design variables include 64 thickness and camber variables across the blade 

planform, plus collective and cyclic control inputs up to ±7º

• Fuselage shape could also be designed, but not pursued here (unknown constraints)
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UH-60A Blackhawk Helicopter
Results

• Feasible region is quickly located

• Both moment constraints are satisfied within 
tolerance at the optimal solution

• Final controls: θc=6.71º, θ1c=2.58º, θ1s=-7.00º

Flow

Solves
(2 hrs)

Adjoint
Solves

(3 hrs)
Total Time

Baseline 0.023 - - -

Design 0.103 4 4
0.8 days

(38,400 CPU hrs)

LC



UH-60A Blackhawk Helicopter
Results



Interpretation of Adjoint Solutions

• Adjoint shows sensitivity of objective function to local disturbances in space and time: ∂f/∂R

• Solution can be used for sensitivity analysis as done here

• May also be used to perform rigorous error estimation and mesh adaptation

– Traditional feature-based techniques do not identify such regions

Animations shown in reverse physical time

Helicopter Wind Turbine

Click for Isosurface Animation



Summary and Future Work

Developed adjoint-based design  

methodology for URANS simulations on 

dynamic overset grids in HPC environments

• Formulation

• Implementation

• Verification

• Applications

Also in AIAA-2012-0554:
Wind turbine optimization on 

2,880 cores using mesh
with 87 million elements

• Locally optimal, checkpointing techniques

• Multi-fidelity optimization algorithms

• Convergence acceleration schemes

• Simultaneous adjoint-based adaptation & design

• Extension of adjoint methods to MDO problems

• Continued leverage of computer science, 

software development, and HPC advancements


