Initial Implementation of Near-Body Grid Adaption in OVERFLOW

Pieter G. Buning

NASA Langley Research Center, Hampton, VA

and

Thomas H. Pulliam

NASA Ames Research Center, Moffett Field, CA

11th Symposium on Overset Composite Grid and Solution Technology

October 15-18, 2012, Dayton, OH

- Extend off-body solution adaption approach to near-body grids
 - Make it an integral part of the OVERFLOW solution procedure
 - Efficient enough for time-accurate moving grids!

Off-body adaption reported in: P.G. Buning and T.H. Pulliam, "Cartesian Off-body Grid Adaption for Viscous Time-Accurate Flow Simulation," AIAA 2011-3693, June 2011

10/18/2012

Outline

- (Goal)
- Approach
 - Sensor function and marking
 - Grid generation and connectivity
 - Grid and solution interpolation
- Examples
- Issues
 - Topology limitations
 - Parametric cubic interpolation
- Summary and future work

Approach

- Use the same approach as for off-body adaption, just in computational space instead of Cartesian space
 - Refinement is isotropic
 - Where we have refinement regions, blank out coarser-level regions
 - Neighboring refinement regions differ by only 2x in spacing
 - Use parametric cubic interpolation to form refined grids (more later)

Approach

Controls:

- NREFINE maximum number of refinement levels
 - NBREFINE number of near-body refinement levels, if different
- ETYPE sensor function (undivided 2nd difference, vorticity, undivided vorticity...)
- EREFINE sensor value above which we mark for refinement
- ECOARSEN sensor value below which we mark for coarsening
- Specify near-body regions to explicitly refine
- Specify near-body regions to limit refinement

Sensor Function and Marking

- Undivided 2nd difference of (elements of) Q=(ρ, ρu, ρv, ρw, ρe₀)
- Actually computed as max i=j,k,l
 (normalized and squared;
 take max over Q variables)

$$\left\{ \left[\frac{q_i - \frac{1}{2}(q_{i-1} + q_{i+1})}{q_{ref}} \right]^2 \right\}$$

- This function
 - Is non-dimensional
 - Is independent of grid units
 - Gets smaller as the grid is refined (where Q is smooth)

Sensor Function and Marking

- At each grid point
 - If the sensor function value exceeds a refinement tolerance, mark for grid refinement;
 - If it falls below a coarsening tolerance, mark for grid coarsening
- Within an 8x8x8 grid cube, or "box"
 - If any point votes for refinement, the box is marked for refinement;
 - If all points vote for coarsening, the box is marked for coarsening
- Regions can only coarsen or refine by one level at a time

Grid Generation

- Parametric cubic interpolation vs. linear interpolation
 - Preserves smooth geometry

Pressure contours

Linear interpolation

10/18/2012

Grid Generation

- Parametric cubic interpolation vs. linear interpolation
 - Preserves grid stretching

Computational grid

Parametric cubic interpolation

Linear interpolation

10/18/2012

Grid Connectivity

- Hole cutting
 - All refinement regions get cut by geometry (just like original near-body grid)
- Blanking for refinement
 - Next-finer grid level explicitly blanks out regions in current level
- Connectivity
 - Refinement regions can have
 - Hole boundary points from geometry cuts
 - Hole boundary points from finer refinement grids
 - Outer boundary points (connecting to sameor coarser-level regions)
 - Outer boundary points (connecting to other near-body or off-body grids)
 - Boundary conditions inherited from original near-body grid

Sample grid blanking for refinement regions

Grid and Solution Interpolation

- Use parametric cubic interpolation of *original* near-body grid to form any level refinement region
 - For parallel execution, only have to send necessary part of original grid to processor creating refined region
- Near-body grid and solution interpolation:
 - All MPI groups exchange (pieces of) the original near-body grids to generate original or refinement grids, using non-blocking sends and blocking receives
 - All MPI groups loop through old near-body grids, coarse-to-fine, transferring and interpolating solution onto new grids

Example Applications

- NACA 0012 airfoil
- 2D supersonic inlet
- Leading/trailing wing interaction
- Vortex generator on a flat plate

NACA 0012 Airfoil

• Refinement shows additional flow features, resolves pressure details

4 levels of grid adaption Total grid size 450K points

Original 253x73 O-grid Total grid size 18K points

Flow conditions: Mach 0.55, alpha 8.34 deg, Re=9M/chord

Mach contours

NACA 0012 Airfoil

• Similar answer is obtained using previous approach of off-body grid adaption with thin (fine) near-body grid

4 levels of near-body grid adaption Total grid size 450K points Mach contours

Off-body adaption with thin near-body grid Total grid size 550K points

NACA 0012 Airfoil

• Grid refinement gives resolution of bounce in Cp due to lambda shock

Mach contours with 4 levels of near-body grid adaption

2D Supersonic Inlet

• Grid adapts to shocks, expansion fans, and boundary layer

265x129 34K Coarse grid No adaption

635K Points 567 grids : Adapted grid 4 levels

Flow conditions: Mach 5.0, Re=0.9M, inviscid upper wall

2D Supersonic Inlet

• Visible details of shock/boundary layer interaction, allowing better evaluation of turbulence model response to physics

265x129 34K Coarse grid No adaption

635K Points 567 grids : Adapted grid 4 levels

Leading/Trailing Wing Interaction

- Wake and tip vortex of leading wing impinges on trailing wing
- Experiment performed at Virginia Tech:
 - K.S. Wittmer, W.J. Devenport, M.C. Rife, and S.A.L. Glegg, "Perpendicular Blade Vortex Interaction", AIAA 94-0526, Jan. 1994.

PARTICLE TRACES COLORED BY VELOCITY MAGNITUDE

Flow conditions: Mach 0.1, Re=0.26M/chord, both wings at 5 deg angle-of-attack

Leading/Trailing Wing Interaction

Entropy contours and downstream grid cut show difference in resolution of tip vortex interaction with trailing wing

With 2 levels of near-body and off-body grid adaption Grid size 121M points 10/18/2012

With no grid adaption Grid size 8M points

Vortex Generator on a Flat Plate

- Original grid system included plate grid, box grid, and vortex generator grids
- Throw away box grid and let adaption resolve grid communication

Original surface grids

Vortex Generator on a Flat Plate

• Comparison of no adaption, adaption, and box adaption strategies

- Limitations on original grid topology
- Parametric cubic interpolation for grid refinement

Grid Topology Limitations

- Adaption indexing in computational space doesn't give overlap across
 O-grid periodic boundary
 - Workaround is to split O-grids into 2 grids with overlap

- Similar problem with C-grid wake cut
 - Sample utility splits C-grid into upper, lower, and wake grids

Parametric Cubic Interpolation

- Interpolation of grid will round sharp corners
- This is an issue for the volume grid, not just the surface grid

Adaption with cubic interpolation

Summary and Future Work

Summary:

- A usable near-body grid adaption capability has been implemented and released in OVERFLOW
- Adaption is parallelized and fast enough for time-accurate moving-body problems Future Work:
- Better handling of volume grids that are not smooth
- Implement O-grid (and C-grid?) adaption without the user splitting the grid
- Investigate the balance between near-body and off-body grids, with adaption
- Extend near-body adaption to work with grid systems assembled with Pegasus 5
- Implement some control on growth of grid system