

RECENT DEVELOPMENTS ON THE X-RAYS APPROACH TO HOLE-CUTTING

William M. Chan

Shishir Pandya

NASA Ames Research Center

11th Symposium on Overset Composite Grids and Solution Technology, Dayton, Ohio, October 15-18, 2012

2

OVERVIEW

- Recent advances in automation
- A fast approximate wall distance function algorithm for initial hole boundary estimate
- A study on aerodynamic loads sensitivity to hole boundary locations
- Summary and conclusions

HOLE-CUTTING METHODS AND SOFTWARE Ames Research Center

Methods

- Cartesian hole map
- Line of sight
- X-rays
- Implicit hole-cutting

Software

- PEGASUS5
- OVERFLOW/DCF
- SUGGAR++
- PUNDIT
- OVERTURE

Object X-rays: Meakin, AIAA Paper 2001-2537

- Low memory

Automated

- Closure of component open boundaries to provide proper X-ray pierce points pairing
- Determination of grid points to be cut by each X-ray
- Adaptive image plane map to handle components in close proximity
- Hole boundary adjustment to provide appropriate grid overlap

Software

- Chimera Components Connectivity Library (C3LIB)
- Chimera Components Connectivity Program (C3P)
- Input: flow solver boundary conditions, component ID on solid walls
- Output: X-ray maps, hole point locations, fringe point interpolation stencils

Chan, W. M., Kim, N., Pandya, S. A., Advances in Domain Connectivity for Overset Grids Using the X-rays Approach, Paper ICCFD7-1201, 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, July, 2012 (http://www.iccfd.org/iccfd7).

ADAPTIVE X-RAYS FOR MINIMUM HOLE

Ames Research Center AUTOMATED HOLE BOUNDARY ADJUSTMENT Minimum Hole Cut from Adaptive X-rays

8

Ames Research Center AUTOMATED HOLE BOUNDARY ADJUSTMENT Orphan Removal Iterations

After 1 step

After 3 steps

9

Ames Research Center UNSTEADY 2-D HIGH-LIFT SYSTEM (SLAT REGION)

Spatially variable offset during relative motion simulation

OBJECTIVES OF CURRENT WORK

Composite wall distance function is needed to cut holes between components on surface but was expensive to compute

Domain connectivity CPU time OVERFLOW/DCF = 68 sec. C3P = 107 sec. (54 sec. on computing composite wall distance function)

Investigate faster algorithms

Manually specified or automatically created hole boundaries can have varying locations

Investigate sensitivities of aero load values and convergence rates

FUNCTION COMPUTATION (1)

11

Construct uniform reference Cartesian grid around near-body volume grids Identify cut-cells for each component

FAST APPROXIMATE COMPOSITE WALL DISTANCE FUNCTION COMPUTATION (2)

Determine accurate wall distance for vertices on cut-cells. Fill approximate wall distance for remaining vertices with Fast Marching Method

Interpolate wall distance from reference Cartesian grid onto original volume grids

Not load balanced for connectivityOVERFLOW/DCF (original) – 8 MPI processesC3P (improved)– 8 OpenMP threads

13

Test Case	# Grid pts (x10 ⁶)	OVERFLOW/DCF	СЗР
XV-15	10.0	0.8 min.	0.7 min. (<mark>-12.5%</mark>)
DPW4	16.8	1.2 min.	1.5 min. (<mark>+25%</mark>)
2 Rockets	24.5	1.0 min.	0.6 min. (<mark>-40%</mark>)
D8	77.7	11.5 min.	6.0 min. (<mark>-48%</mark>)

Number of wall-distance function computations needed for connectivity

OVERFLOW/DCF	C3P
0	Ν

N = number of components

AERODYNAMIC LOADS SENSITIVITY STUDY

Objectives

Investigate correlation between component aerodynamic loads (values and convergence) with

- hole boundary offset distance
- cell attribute compatibility between fringe point and interpolation stencil

Approach

- Define a normalized hole boundary offset distance and a cell attribute compatibility measure
- Compute solution on test cases with different normalized hole boundary offset distances
 - Single capsule
 - Two rockets
 - 4th AIAA Drag Prediction Workshop Common Research Model
 - D8 Double Bubble Aircraft

NORMALIZED HOLE BOUNDARY OFFSET DISTANCE

Hole in off-body grids

Define normalized hole boundary offset distance $\delta = D_h / D_b$

Hole in near-body grids

Define similar δ based on min distance between components

 $\delta = 0.0$

 $\delta = 0.5$

CELL ATTRIBUTE COMPATIBILITY

Possible measures: cell volume, aspect ratio, orientation

Current simple measure:

Let V_f = cell volume at fringe point V_i = cell volume at interpolation stencil

Local compatibility measure $c = min(V_f/V_i, V_i/V_f)$

Global cell size compatibility *C* = average *c* over all fringe points (orphan points get value zero)

(all fringes are orphans) $0 \le C \le 1$ (ideal compatibility)

SINGLE CAPSULE M=1.2, α=180.0, Re/in.=18200

C3P hole boundary

Drag coefficient convergence history

Converged value variation from δ =0.5: -0.3% to +0.5%

Convergence is similar for all cases

Ames Research Center AIAA 4TH DRAG PREDICTION WORKSHOP CRM Grid and Solution (M=0.85, α=2.363 deg., Re/in.=18129.08)

Hole Boundaries from C3P

Pressure Coefficient

D8 DOUBLE BUBBLE AIRCRAFT C_L , C_D , C_M Convergence Histories and

Deviations from Group Mean for \delta=0.25, 0.5, 0.75 and C3P

Time step number

SUMMARY AND CONCLUSIONS

Enhanced X-rays - C3P software

- Inputs only require flow solver b.c. and component tags on walls
- Automated efficient treatment of components in close proximity
- Automated spatially variable hole boundary offset from minimum hole

Fast Wall Distance Function Computation

- CPU time mostly comparable to OVERFLOW/DCF (original X-rays)
- Benefits more significant if usable for solving turb. model equations

Aerodynamic Loads Sensitivity Study

- Similar aero load convergence rates observed for all $\delta\mbox{'s}$ and C3P
- For best practice hole boundary offset distances (δ = 0.25 0.75), aero load converged values do not appear to correlate with δ or cell size compatibility
- Typical variations of aero loads for $\delta = 0.25 0.75$ and C3P are small relative to typical variations between different flow solvers, grid stretching ratios, turbulence models