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Introduction
Motivation for Improvements to Pegasus5

Add support for cell-centered grids
Request from NASA MPCV Orion project
DPLR currently supports multi-block and overset grids
Leverage grid-generation work done for Overflow analysis
Coupled with the Chimera Grid Tools software, provides a
very powerful complex-geometry capability

Three-fringe layers to support higher-order differencing
schemes in Overflow

Complex geometries drive need for improved automation
and efficiency

Reduce user input for hole-cutting
Efficiency improvements in hole-cutting
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Background: Pegasus5 Usage
Version 5 History: 1998 to present

Enabled AST Program level-1
milestone: High-Lift Aircraft
CFD in 50 days

Space Shuttle Program
Return-To-Flight
Boeing high-lift and cruise
CFD analysis
Orion Launch Abort Vehicle
... and many more

Distributed to over 350 outside
organizations and users
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Background: Pegasus5 Features and Capabilities
Current Version 5.1

Automatic hole-cutting
Multi-step hybrid method using indirect and direct hole
cutting
Cartesian hole maps provide indirect representation of hole
shape
Line-of-sight test using surface-grid elements: direct refined
hole cutting

Hole optimization through use of “level 2” interpolation
Internal projections between overlapping surface grids
Finds best interpolation stencil through exhaustive search
Parallel execution using MPI on shared and distributed
memory systems
Automatic restart capability
Maintains manual hole-cutting capability from Pegsus4
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Background: Pegasus5 Limitations
Current Version 5.1

Computationally expensive, this is mitigated by
parallelization

Stand-alone program: cannot be used for time-accurate
moving-body problems

Overflow cannot run in DCF mode and use the Pegasus5
XINTOUT file

Cannot use automatic off-body Cartesian grids
Cannot use Overflow adaptive grid refinement
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Cell-Centered Grids
Support for DPLR CFD code

DPLR Code
Data Parallel Line Relaxation
Navier-Stokes hypersonic flow solver
Structured, 3D, cell-centered, finite volume
DPLR uses the dirtLib overset library from Ralph Noack
Overset stencils and iblanks read in “dci” format

Overset Requirements
Input-grid coordinates located at vertex locations
Hole points defined at the cell-centers
Fringe points and donor points defined at cell-centers
Work with hybrid multi-block/overset meshes: donor
cell-centers span multi-block boundaries
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Cell-Centered Implementation
General Approach

Generate cell-centered meshes with ghost cells
Identify multi-block connectivity
Projection: interpolate from wall vertices to cell centers
ADT: build trees using cell-centers
Interpolation: search using cell centers
Hole cutting:

All hole-cutting operations performed on vertex nodes
Transfer blanking to cell-centers
Cell-center is blanked if any 8 surrounding vertices blanked

Identify fringe cell-centers: hole fringes, outer-boundary
fringes, level-2 fringes
Output: all stencils and iblank array written to “.dci” file
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Verification with dcintegrity Program
Cell-center version of XINtegrity

Reads the pegasus5.dci file and the cell-center coordinates
Verifies all fringe indices are valid
Verifies all donor indices are valid
Verifies all donor weights add to 1.0 for each fringe point
Verifies all hole points are surrounded by fringe points
Verifies that all fringe points are marked in the iblank array
Verifies the interpolation stencils

Error = Interpolated donor coordinates - recipient
coordinates
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Three Spheres Test Case
Periodic-grid verification test

Rogers 10 / 31



Orion Heatshield Test Case
Courtesy of Chun Tang/NASA Ames/TSA

2 Zones
1.3M points
Suggar Fringes

Pegasus5 Fringes
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Orion Heatshield Test Case
DPLR Convergence: Mach = 23.5
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Orion Heatshield Test Case
DPLR Results: Mach = 23.5

Suggar Pressure

Pegasus5 Pressure
Suggar Mach
Pegasus5 Mach
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Supersonic Retro-Propulsion (SRP) Test Case
Courtesy of Kerry Zarchi/NASA Ames/TSA

29 zones
20.8M points
Multi-block and Overset
Pegasus5 wallclock = 100 sec
12 Intel Xeon CPUs
One manual hole cut
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SRP Test Case
Overset Fringes

Suggar Fringes

Pegasus5 Fringes
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SRP Test Case
Overset Fringes

Suggar Fringes

Pegasus5 Fringes
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SRP Test Case
DPLR Convergence: Mach=2.4
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SRP Test Case
DPLR Drag Force Convergence: Mach=2.4
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SRP Unsteady Flow Fields

Pegasus5 Suggar
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Triple-Layers of Fringe Points

Can request three layers for
hole fringes and/or
outer-boundary fringes
Reports numbers of orphans in
each of the first, second, and
third layers
Second and third layer
orphans can be turned back
into interior points
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Automatic HCUT Creation

Enhance auto hole cutting using domain decomposition

Current default: one hole-cutter
Automatically creates bounding-box around all solid-walls
Cut holes in all zones

Current recommended practice is to create multiple HCUT
hole-cutters: requires manual specification of bounding
boxes
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Goal: Automatic Decomposition To Fit The Geometry

One Hole-Cutter 64 Hole-Cutters
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Approach

Recursively split
the domain

Split the box in
the longest
dimension
Split the box
with the most
surface-grid
points
Never create a
box completely
inside
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Wing-Body Test Case: Cartesian Fringe Elements
Ratio of Total Cartesian Volume = 10.1

One Hole-Cutter: 512x512x512 64 Hole-Cutters: 128x128x128
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Modifications to Painting Algorithm

Required improvements to
painting algorithm
Detect which hole-cutter box
corners are inside, which are
outside
Newly created corners use
line-of-sight test to determine
inside or outside
Seed the painting only on the
outside corners
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Wing-Body Test Case: Parallel CPU Usage
12 Intel Xeon CPUs

One Hole-Cutter: 512x512x512 64 Hole-Cutters: 128x128x128
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Liquid Glide-Back Booster Example

64 Hole-Cutters Fringe Elements
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Liquid Glide-Back Booster: Parallel CPU Usage
12 Intel Xeon CPUs

One Hole-Cutter: 512x512x512 64 Hole-Cutters: 128x128x128
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Manual-Hole Cut Efficiency Improvements
Recursive Cartesian Bounding Box Algorithm

Taken from the Walldist
program, now part of Overflow
Wigton, Parlette, Biedron,
Rumsey, Jespersen
Exact Search
Used to replace the old
exhaustive search algorithm
Speed-up: 10-20 times faster
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Manual-Hole Cut Efficiency Improvements
Recursive Cartesian Bounding Box Algorithm

Construct boxes recursively:
cut along longest axis, equal
number of points in each half

Search algorithm:
Compute distance to each
bounding box
Find closest distance for
each point in closest box
If next-closest box distance
< closest-point distance,
search that box
Repeat last step until
box-distance >
point-distance
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Manual-Hole Cut Efficiency Improvements
Marching Patch Algorithm

Provide initial guess for closest
surface point

Compute distance for surface
points in subset patch
Iteratively march the surface
patch
Stop when minimum-distance
point does not change
Inexact near surface creases,
highly curved surfaces
Provided as an option in the
code
Speed-up: 100-200 times faster
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Conclusion

Cell-centered grids and DPLR support
Produces holes and interpolation stencils for cell-centers
Verified operation and results using several test cases

Implemented a domain-decomposition approach to create
HCUT hole-cutters:

More efficient use of Cartesian elements
Improved parallel efficiency

Version 5.2 of Pegasus will soon be available for β-testing
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