

Overview of Capabilities of Suggar++ With Emphasis on Recent Improvements

Ralph Noack David Boger

Penn State University Applied Research Laboratory

- Brief overview of capabilities
- Details on what is new
 - Integrated USURP
 - Periodic passage: Turbine blade row
 - 650 million grid point grid system
 - High-order overset interpolation
- Summary

BRIEF SUGGAR++ OVERVIEW

- Built upon experience with SUGGAR
 - Complete rewrite
 - Improved algorithms
- Significantly better than SUGGAR
 - Performance: memory and speed
 - New capabilities
- Integrated with new Pointwise OGA capability

Suggar++ Overview

- Node- and/or cell-centered assembly
- Grid types
 - Structured: Curvilinear and Cartesian
 - Unstructured
 - Tet, Mixed element, Octree
 - General polyhedral to be added in future

Suggar++ Overview

- Hole cutting
 - Direct cut, analytic, octree, manual
- Integrated surface assembly
 - Structured and/or mixed element grids
- Overlap minimization using general Donor Suitability Function
 - Including distance-to-wall
- Support for arbitrary structured solver stencil

Suggar++ Overview

- Hybrid parallel execution
 - Threads and/or MPI
 - Decomposition of structured or unstructured grids
- Unstructured grid refinement
- Designed for moving body problems
- Link into flow solver for integrated dynamic OGA
 Dynamic Groups: hide OGA execution time

- Integrated USURP to support F&M integration
- Periodic passages
- High-order support
 - Arbitrary number of fringes
 - High-order interpolation for structured grids

INTEGRATED USURP CAPABILITY

Integrated USURP capability

- Similar but not identical to the USURP utility
 - Different coding
 - Uses CLIPPER for polygon clipping
 - More robust than GPC used in USURP
 - Triangulation routines are different than USURP
- Panel weights
 - Included in DCI file: Can be retrieved via DiRTlib
 - Written to files
- Can create zipper grid
 - Not sufficiently robust

PERIODIC PASSAGE CAPABILITY

- Simulate one blade row out of full wheel
- Typically non-planar periodic boundary surfaces
- Flow solver uses periodic boundary conditions to simulate effect of all blades

- Donor stencil member can be across periodic boundary
 - Virtual donor member grid: flow solver must transform velocities
- Grid can extend into neighboring passage
 - Donor search must extend into virtual grid
 - Not yet implemented
- DCI must be consistent across boundaries

PENNSTATE Periodic Passage: Complexities For Overset

- Grids that overlap on passage boundary will have different representations of passage boundary
 - Treatment to prevent flood fill leaks along passage boundary
 - May need surface assembly to keep points inside passage
 - Ignored to be consistent with full wheel/nonperiodic grid system

SUGGAR++ EXECUTION OF VERY LARGE GRID SYSTEM

PENNSTATE Suggar++ Execution of Very Large Grid System

- Athena grid system obtained from Pablo Carrica (U. lowa/IIHR)
 - Appended, propeller, moving rudder, refinement grids
 - Plane of Symmetry
 - Provided Medium and Fine grid systems

Set Of Grid Systems

- Started with Medium and Fine grid systems
- Mirrored and refined to get larger systems

- Refined by factor of 2 in each direction

Case	Number of grid points
Medium	14,374,923
Medium-mirrored	28,749,846
Medium-mirrored-refined	225,434,040
Fine	40,871,388
Fine-mirrored	81,742,776
Fine-mirrored-refined and	653,279,190
partitioned	20

Fine-mirrored-refined: Preliminary Results

- Used 20 nodes and only one thread/node
 - Limit of available nodes
 - Used only one thread to limit memory usage
 - Max memory used was 22 GB
 - Nodes had 24 GB memory
 - Probably paging with degraded performance
- Time and resources did not permit a detail performance analysis
 - Successful feasibility demonstration

HIGH ORDER OVERSET INTERPOLATION

High Order Overset Interpolation

- Suggar++ has had the ability for an arbitrary number of fringe levels from the beginning
- Added high-order interpolation using Lagragian polynomials
 - Using Lagrangian Polynomial approach of Scott Sherer
 - Implemented for Node- and Cell-Centered assemblies

High-Order Overset Interpolation Examination of Accuracy

- Suggar++ supports a Monitor Grid
 - A set of points where all points/cells are fringes
 - Useful for interpolating solution onto a new grid
 - Examine solution at specific points
- Examine order of accuracy of high order interpolation
 - Background/donor grid system
 - · Series of grids refined by factor of 2 in each direction
 - Dependent variables will be analytic functions
 - Linear
 - Polynomial of varying order
 - Exponential, analytic vortex
 - Monitor grid to obtain interpolated values at set of locations
 - Find the maximum deviation between the interpolated and exact $\frac{25}{25}$

High Order Interpolation Single Grid

- Single uniform Cartesian donor grid
- Monitor grid is a randomly perturbed set of points
 - To prevent fortuitous alignment
- Only show results for analytic vortex
- Convergence slope is computed using gnuplot

Order=2nd F=5.0*pow(M_E,-r*r/16.0)

- Inverse distance weighting is first order
- Least square, dual hex, trilinear are 2nd order

27

6th Order Interpolation Single Grid Results

Order=ho6 F=5.0*pow(M_E,-r*r/16.0)

• 6 point Lagrangian polynomial is 6th order

- Block-to-Block grid systems arise from
 - Grid generation
 - Grid decomposition/splitting
- How does this affect high-order interpolation?

Consider A Single Grid

- Cell-centered high-order interpolation uses dual grid
 - Structured grid connecting cell centers

PENNSTATE **ARL**

Cell-Centered Dual Grid

- Dual grid does not cover volume
- Will require extrapolation

Lagrangian Polynomial with Extrapolation

Use "Extended Grid"

- Extend grid into neighboring blockto-block grids
- First into block-face neighbors

Use "Extended Grid"

- Extend grid into neighboring blockto-block grids
- Next across edges and corners

6th Order Interpolation Extended Grid Results

• Extended grid yields same results as single grid

Real World: Turbine Blade

- Single blade
 Periodic passage
- Cell-centered Blockto-block grids
- Passage boundaries are not displayed

40

- Unstructured B2B connection
- Primary grid
 plane
- Extended grid planes
 - Connects cell centers

Simplified Grid System

- Cannot fully extend grid
- Leaves void where extrapolation is required

Overlapping Surfaces & High-Order Interpolation

- Surface assembly required to "shift/project" fringes into donor grid
- Bilinear surface representation not appropriate for high-order interpolation
 - Must use high-order polynomial representation
- Cell-centered assembly must use dual surface
- Viscous spacing + stretching + high-order
 - Sensitive and difficult problem
 - Not happy with the current results

SUMMARY

- Suggar++ is the most general overset grid assembler available
- Significant improvement over SUGGAR
- New capabilities were presented
 - Integrated USURP
 - Periodic passage
 - High-order interpolation
- Demonstrated execution for very large grid system

- Presented difficulties with high-order interpolation for cell-centered assemblies
 - Dual grid does not cover domain
 - Extended grid can recover single grid results
 - Block-to-Block topologies can leave regions without extended grid
 - Adversely affects interpolation accuracy
- Recommend node-centered approach for high-order overset solutions

Acknowledgments

- Funding provided by
 - NASA Grant No. NNX10AQ74G
 - Technical Officer: Molly White
 - ONR Grant N00014-12-1-0315
 - Technical Officer: Dr. Patrick Purtell

Commercial distribution and support for Suggar++ provided by

Celeritas Simulation Technology, LLC

http://www.CeleritasSimTech.com

Exportable under an EAR-99 license