Overset Grids Technology in STAR-CCM+: Methodology and Applications

Eberhard Schreck, Milovan Perić and Deryl Snyder

eberhard.schreck@cd-adapco.com milovan.peric@cd-adapco.com deryl.snyder@cd-adapco.com

> **CD-adapco** www.cd-adapco.com

Contents

- About STAR-CCM+...
- Overset grids method in STAR-CCM+
- How overset grids work in STAR-CCM+ from user perspective
- Application examples:
 - Parametric study: varying angle of attack
 - Launching of lifeboats, missiles etc.
 - Relative motion of vessels with crossing paths
 - Store separation
 - Other devices with moving parts...
- Future development

About STAR-CCM+, I

- What distinguishes STAR-CCM+ most from other codes?
 - User interface (everything under one roof...)
 - Meshing tools:
 - Surface wrapping
 - Surface remeshing
 - Surface repair
 - Automatic volume meshing and mesh design
 - Process automation
 - Some physics and numerics features...

About STAR-CCM+, II

Simulation of vehicle thermal management at Daimler AG: 777 solid parts, surfacewrapping and automatic mesh generation for a **conjugate heat transfer analysis** (3 years ago...).

> Mesh size: ca. 30 millions cells Meshing time: ca. 100 minutes

High geometric fidelity...

Courtesy of Daimler AG

About STAR-CCM+, IV

Many kinds of problems can be solved without overset grids... Overset grids are needed for:

- Easy parametric studies
- Extreme or constrained motions...

Overset Grids Method in STAR-CCM+, I

- Control volumes are labelled as:
 - Active cells, or
 - Passive cells.
- In active cells, regular discretized equations are solved.
- In passive cells, no equation is solved they are temporarily or permanently de-activated.
- Active cells along interface to passive cells refer to donor cells at another grid instead of the passive neighbours on the same grid...
- The first layer of passive cells next to active cells are called acceptor cells...

Overset Grids Method in STAR-CCM+, II

 Currently, triangular (2D) or tetrahedral (3D) interpolation elements are used, with either distance-weighted or linear interpolation... Other (higher-order) interpolations will come...

Overset Grids Method in STAR-CCM+, III

• No explicit interpolation of solution is performed...

dapco

 Solution is computed on all grids simultaneously – grids are implicitly coupled through the linear equation system matrix...

Overset Grids Method in STAR-CCM+, IV

 Different interpolation functions can be used to express values at acceptor cells via values at donor cells (different interpolation elements)...

> Interpolation elements are not unique – when grids move, continuity is important...

- Donor cells must be active cells.
- The change of cell status is controlled by the solver and happens automatically.
- The user can visualize the cell status as a scalar field (this can help in case of problems mostly due to inadequate grids)...

Overset Grids Method in STAR-CCM+, V

• Overset grids usually involve:

adapco

- One background mesh, adapted to environment (can be fixed or moving);
- One or more overset grids attached to bodies and overlapping the background mesh and/or each other.
- Each grid represents a separate region.
- Both background and overset mesh(es) can be generated in the usual way (or imported) as in the case of a single region.
- Each grid can also deform (e.g. in a coupled fluid-structure interaction simulation).
- Overset grid can fall out of solution domain (cut-out by boundary surface).

Example: Pitching Foil

Overlapping grid can fall outside solution domain...

Overset Grids Method in STAR-CCM+, VI

- In the overlapping zone, cells should be of comparable size in both meshes (recommendation):
 - Interpolation errors in the coupling equation should be of the same order as when computing convective and diffusive fluxes (interpolation over half a cell);
 - The coarser of the two coupled meshes determines the error level.
- Between two body walls, at least 4 cells on both background and overset grid are needed to couple them *(requirement)*.
- The overset grid should not move more than one cell per time step in the overlapping zone *(recommendation)*.

Working with Overset Grids, I

- No compromises on usability:
 - Any grid type can be used
 - Most physics models can be applied
 - Processing pipeline (meshing, solving, analysing) unaffected
 - Minimum on additional set-up steps:
 - New region interface (with interface options)
 - New boundary condition

dapco

- Using STAR-CCM+ infrastructure for interfaces
- New intersector-module added (searches for donors, defines interpolation factors, cuts holes etc.) solver almost unaffected...

Working with Overset Grids, II

CD-adapco

Working with Overset Grids, III

Working with Overset Grids, V

"Volume Mesh Representation" includes active cells - used to plot results...

Working with Overset Grids, VI

Checking "Overlap Cell Status" (scalar field): acceptor cells must separate active and passive cells – direct contact is not allowed...

Working with Overset Grids, VII

Checking "Overlap Cell Status" (scalar field): the overset grid here contains only active and acceptor cells...

Pressure Contours

Pressure contours with lines: small imperfections (two lines visible within overlap zone) visible only at few locations – most contours are almost perfectly continuous (grid from previous slides)

Velocity Contours

Velocity contours without lines: hardly any imperfection visible – contours appear almost perfectly continuous (grid from previous slides) **D-adapco**

Convergence of Iterations

Implicit coupling of grids allows convergence to roundoff level of residuals...

Application to Parametric Studies, I

Flow around a car at different angles of attack

A horizontal section through both grids (only active cells are shown).

Total number of cells: ca. 1 million

Vertical section through the two grids (only active cells are shown).

Application to Parametric Studies, II

Velocity distribution in a section parallel to bottom wall for different angles of attack

Application to Parametric Studies, III

CD-adapco

Residual history from the computation of flow around a vehicle in a wind tunnel at different angles of attack: time step 1000 s, rotation 15° per time step, standard *k*- ε turbulence model, under-relaxation 0.9/0.1/0.9 for velocities/pressure/turbulence, wind speed 40 m/s

Application to Parametric Studies, IV

-ForceZ-ForceX-ForceY

dapco

History of computed forces from the computation of flow around a vehicle in a wind tunnel at different angles of attack (since the time step is very large, steady-state solutions are obtained).

Application to Parametric Studies, V

Simulation of motion of a container ship in Stokes waves propagating from right to left: initial vessel orientation 30° (upper) and -30° (lower) relative to the direction of wave propagation

0 20000

Application to Parametric Studies, VI

Simulation of motion of a container ship in Stokes waves propagating from right to left: initial vessel orientation 30° (upper) and -30° (lower) relative to the direction of wave propagation

Simulation of Lifeboat Launching, I

Simulation of Lifeboat Launching, III

Simulation of lifeboat launching from a platform

Simulation of Missile Launching

Vessels With Crossing Paths

Two vessels with crossing paths:

This kind of simulation would be difficult to perform without overset grids (sliding grids cannot be used; morphing would require frequent re-meshing)

Moving Control Surfaces

Store Separation, I

adapco

 Note that initial motion is dominated by ejector forces

Store Separation, II

Store Separation, III

Store Separation, IV

Comparison of motion in simulation and experiment

Store Separation, V

Comparison of motion in simulation and experiment

Store Separation, VI

Comparison of pressure in simulation and experiment

Simulation of Flow in a Mixer, I

Simulation of Flow in a Mixer, II

CD-adapco

Future Developments

- The most important future developments include:
 - Allowing for multiple overset grids, overlapping each other (currently in progress);
 - Automatic mesh adaptation to fulfil requirements of overset grids (avoid failures due to inadequate grids in the overlapping zone):
 - Minimum number of cell layers in gaps
 - Similar cell size in overlapping zone
 - Refining the background grid ahead and coarsening behind a moving body, to facilitate simulation of motion over large distances.

Simulation of Pouring

