
OSCAR - An Overset Grid Assembler
for Overlapping Strand/CARtesian

Mesh Systems

Jay Sitaraman Beatrice Roget
University of Wyoming

Andrew M. Wissink
U.S Army Aeroflightdynamics directorate

Outline

• Motivation
• Problem definition and grid topologies
• Strand/Cartesian overset grid assembly

– Preprocessing
– Search
– Communication
– Application examples

• Gridding issues at sharp corners
– Removal of warped volumes
– Clipping strategies to clear self-intersections

• Ongoing and future work

Motivation for Strand/Cartesian
framework

• Body-conforming volume grids take time to generate and require hands-
on expertise for complex geometry

– In descending order of difficult (1)Structured multi-block,
(2)structured overset, (3)unstructured

• Parallel Overset Grid Assembly becomes imbalanced for any type of
partitioned grid systems – rebalancing can improve this, but at the
expense of larger communication overhead

• Compact data structures for grids – maintainable concisely on each
process can remarkably improve efficiency

• Software design of the future should support the most efficient work flow
from CAD surface to aerodynamic loading metrics (thrust of CREATE A/V)

Motivation for dedicated Overset Grid
Assembler (OSCAR)

• Strand grids are semi-structured – have to use efficient
search strategies that can take advantage of this

• Compact representation of global mesh data known in each
process. Have to take advantage of this.

• Data flow is different from traditional approach :

– every process searches for donor cells suitable for its query

points in other processes (automatically scalable)

– In traditional approach, each process searches for donor cells in

its mesh-data for query points from other processes

Meakin, AIAA (2007), Katz JCP (2011), Wissink, AIAA (2012)

Strand/Cartesian mesh system

Off-body mesh
generation
adapting to strand
spacing

Strand structure –
normals for each
corner of a strand
stack is fixed at root
(different from
standard hyperbolic
prismatic mesh
generation)

Strand and Cartesian Mesh data
 structures

• Strands

Same normal
distribution for
all strands

Type Integers (4 byte) Floats (8 bytes)

Surface Nodes 0 3*nnodes

Surface
connectivity

3*nfaces

Node normals 3*nnodes

Clipping index nfaces

Distance function nlayers

glob2loc map 2*nfaces

Total memory in Bytes = 24*nfaces + 48*nnodes + 8*nlayers
Only 9.6 MB of storage for mesh with 199,996 faces, 100,000 nodes
and 50 layers (total grid cells close to 10 million)

Cartesian mesh system

• Nested block format

Compact storage:
7 ints per block (ilo(3), ihi(3), level)
Global DX (spacing)
Global XLO (lower corner coords)

For 1000 blocks this is only 28kB of data

Problem definition

• An overlapping grid system is composed of Strand and
Cartesian mesh types and is to be solved by
partitioning into multiple processes

• For each grid node (or cell centroid), the overset grid
assembler must identify and designate an unique point
type, i.e. it should a field point, receptor point or hole
point. For Strands, receptors are specified based on
“clipping”

• For each receptor point, it has to also identify the

donor cells and the weights

Parallel Strand/Cartesian Overset Grid
Assembly (overview)

• Data resident in each process

– global strand grid and Cartesian grid data

• Multiple strand grids (one for each body) is allowed

– Local solution data, i.e. of the few strand blocks
and Cartesian blocks assigned to this process

Overset Grid Assembly: overview
• In each process

1. Tag the query points* above clipping as mandatory receptors

2. For all query points, search all strand grids (including itself) for possible donors
(donors must have better resolution than the query point itself)

3. If a donor cell is located, notify the process that own the solution data of this donor
cell with appropriate information for data interpolation

4. Generate off-body grids using the list of mandatory receptor points that didn’t find
donors

5. Repeat steps 2 and 3, but search domain now includes both the strand and Cartesian
grid systems and query points include ones from both Strand and Cartesian grids

6. Finalize a communication map : each process knows its donor map and receptor map

• Donor map – where to interpolate from and whom to send this data

• Receptor map – whom to receive data from and which locally owned data to update

*Points were solution data is stored (could be cell centers or nodes)

Overset Grid Assembly
(Difference from traditional approach)

1. Search donor cells for
self-owned query points
in all grids

2. Total number of searches
are directly proportional
to number of query
points in each process

3. Communication needs to
happen only after the
best donor cell has been
picked

1. Search donor cells for
query points from other
partitions

2. Total number of searches
are directly proportional
to the physical volume of
each unstructured
partition

3. Communication needs to
happen before the best
donor has been picked

Strand/Cartesian grids are much more scalable since number of query points per
process can be equalized easily with partitioning. In traditional case, variance between
physical volumes has to be minimized as a constraint to improve load-balance

Scalability issues

More Balanced for domain connectivity Imbalanced for domain connectivity

Strands are always partitioned this way
since the surface grid is partitioned

Scalability issues

Partitioning based on
surface grid and associated
volume cells Traditional non-weighted partitioning of the

nodal graph
• all partitions have equal number of cells but
very different volumes
• donor search will be imbalanced

Strand grid search process

– Create an auxiliary grid by
dividing the bounding box of
each strand grid

– Make an inverse map that each
auxiliary grid cell to a “strand
super cell” or “strand stack”

– Find a starting guess using
inverse map

– Use line-search to walk into the
right stack

– Use another map in the strand
direction to identify the exact
containing cell

Preprocessing

Search

Surface grid

Strand grid
outer surface

Bounding box

Inverse map to assist searching :
boxes marked red can potentially
contain strand stacks

Strand stacks

Preprocessing (1)

Preprocessing(2)

Strand stack

Inverse-map by rasterization

Search line

Query point

Start point

Search line
(exploded view)

Donor search using line-walk process

Strand super cell
or stack

actual
donor
cell

Point
distribution
along the strand

Logarithmic inverse map

Query point Donor cell

Actual donor cell using secondary map

Communication in Strand/Cart
overset grid assembly (OSCAR)

P0

P1

P2
…

…

…

…

…

Pn

P0

P1

P2

…

…

…

…

…

Pn 1. Search for strand donors
2. Build cart grid (external)
3. Search for strand/Cart donors
4. Send donor cells to host partition that owns data
5. Create donor/receptor lists
6. Interpolate actual data and exchange

Communication in traditional
overset grid assembly (PUNDIT)

…..

……

P1

P2

Pn

…..

……

P1

P2

Pn

Exchange bounding boxes

(All to all communication)

Communication in traditional
overset grid assembly (PUNDIT)

…..

……

P1

P2

Pn

…..

……

P1

P2

Pn

Evaluate potential receiver points

based on bounding box intersection

checks and send receiver point lists

to all candidate donor processors

Communication in traditional
overset grid assembly (PUNDIT)

…..

……

P1

P2

Pn

…..

……

P1

P2

Pn

Get all potential donor cells from all

processors that found donors and

select the best quality donor

Communication in traditional
overset grid assembly (PUNDIT)

…..

……

P1

P2

Pn

…..

……

P1

P2

Pn

Form interpolation table

synchronizing donor and receiver list

Application Cases

• Order analysis using Sphere geometry

• NACA0015 wing overset connectivity
and flow solutions

Sphere problem
1. Create a surface triangulation on a

sphere using Delaunay approach
(N triangles can be parameterized)

2. Create Strand grids by choosing a
normal distribution with n layers

3. Create random query points (number
can be parameterized)

4. Search for suitable donors for each of
these query points

5. Perform the same search problem using
the same grid in unstructured prismatic
grid format using PUNDIT

-> Can quantify order of the search process by
performing parameter sweeps

0.2 million cells
0.1 million QP

6.3 millions cells
1 million QP

Wall-clock-time for donor search for
varying sets of parameters

Ti
m

e
to

 s
e

ar
ch

 (
se

co
n

d
s)

 Time to search
follows power rule:
Ts K NQP Ncells

(dashed lines)

Strong function of
the number of query
points (1)

Weak function of the
number of cells
(0.1)

Ncells

NQP

PUNDIT vs. OSCAR comparison of
search times

Ncells= 11 millions

OSCAR is faster but not by
much - why?

Time to search depends
on number of line-walks,
average line-walk length is
the same (2 cells) for both
codes

PUNDIT vs OSCAR
order analysis

• PUNDIT search order

• OSCAR search order

NACA 0015 wing

2.5 million strand cells
11 million off-body grid nodes

NACA0012
scalability of OSCAR

Scaling degrades on 64 cores because of communication, note that the time required
is only 20 milliseconds and the cluster used had only gigE network fabric which had
almost 8-10ms of latency

Strand Overset grid assembly issues
for real geometry

• Bad – severely warped/negative volumes in
concave regions

• Self intersections and how to clear them
without low quality donation

• Should off-body get really close where strand
intersections happen?

DLR-F6 : surface elements
with invalid strand cells
(may require changed
clipping)

Strand self-overlap and
invalid cells

Need method to identify and
isolate regions of self-overlap

Focus on wing-fuselage
junction

A’

B’

C’

u

v

w

A

B

C

A

3 negative real roots:
no clipping required

Area of triangle (A’,B’,C’) :

 A()2 = { p0 p1 p2 p3 p4 }

find when area is minimal : dA / d = 0 :
 3 values of

1

2

3

4

Determining clipping level
for invalid cells

A’

B’

C’

u

v

w

A

B

C

A

1 real root (positive) :
Clip at

Clip here

Area of triangle (A’,B’,C’) :

 A()2 = { p0 p1 p2 p3 p4 }

find when area is minimal : dA / d = 0 :
 3 values of

1

2

3

4

Determining clipping level
for invalid cells

Area of triangle (A’,B’,C’) :

 A()2 = { p0 p1 p2 p3 p4 }

find when area is minimal : dA / d = 0 :
 3 values of

A’

B’

C’

u

v

w

A

B

C

1

2

3

4

Determining clipping level
for invalid cells

A

3 real roots, 1 neg., 2 pos :
clip at largest

Clip here

A’

B’

C’

u

v

w

A

B

C

A

3 real roots , all positive
Clip at smallest

Clip here

Area of triangle (A’,B’,C’) :

 A()2 = { p0 p1 p2 p3 p4 }

find when area is minimal : dA / d = 0 :
 3 values of

1

2

3

4

Determining clipping level
for invalid cells

Removing invalid cells

Before After
“Gap” created

(no smoothing of
strand normals
used)

Cells with better donors become receptor cells:

No overlap (donor from Cartesian mesh) With overlap (donor from strand mesh)

Identifying receptor cells in region of
self-overlap

When overlap donors are found in the
strand mesh :
small volume with no donor cells
exists, require either:
• background Cartesian mesh (patch)
• modification of the strand mesh
structure

Donor cells from self strand mesh:
“gap” problem

Concluding observations

• Strand/Cartesian meshing approach is a viable
overset grid solution, provides an opportunity to
streamline future CFD solutions
– - hands-off, CAD to flow solution

– Better scalability

• Demonstrated improvements
– Search efficiency for sphere problem

– Full solution for an overset wing problem using
Strand/Cart architecture (details in next talk)
• Fast domain connectivity (2% or time step time)

Future Work

• Application of strand/Cartesian technology for more realistic test
cases

• Improve asymptotic order of search by further algorithm
optimizations
– Improved rasterization
– Improvements to line-walk search

• Robust approach to clear self intersections and provide means of
solving the “gap problem”
– Telescoping Cartesian grids to cover the gap
– Multiple strands to prevent gap
– Have few strands have two normals associated with them
– Solver modification to accommodate bad volume cells as fringes
– Nearest-neighbor type interpolation at face-centroids

