11th Symposium on Overset Composite Grids and Solution Technology

Wright Patterson Air Force Base Dayton, OH USA

Oct 17 2012

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Collaborators:

Jayanarayanan Sitaraman, U. Wyoming Aaron Katz, Utah State Robert Haimes, MIT Presented by:

Andrew Wissink

U.S. Army Aeroflightdynamics Directorate

Aviation and Missile Research, Development and Engineering Center Moffett Field, CA

Approved for public release; distribution unlimited. Review completed by the AMRDEC Public Affairs Office (FN6065, 16 Oct 2012)

Presentation Outline

Overview

RDECOM

- New capabilities
- Sample Results
- Strand Solver Developments
- Summary

Version 3 Rainier

Supports high-fidelity rotary-wing simulation by government and industry Developed & maintained by a team at Army AFDD.

Dual Mesh CFD Paradigm

Unstructured "near-body"

- Resolve near-wall viscous flow
- Complex geometries

Cartesian "off-body"

- Computationally efficient
- High order accuracy
- Adaptive Mesh Refinement

Effective for time-dependent/ moving-body applications

CFD Components

Near-body NSU3D flow solver

RDECOM

- Developed by Mavriplis at Univ. of Wyoming
- General unstructured tets, prism, hex
- Reynolds-averaged Navier-Stokes
- Spalart-Allmaras turbulence model
- 2nd-Order vertex-based spatial discretization
- 2nd-Order BDF time integration

Off-body SAMARC flow solver

- Couples LLNL SAMRAI with NASA Ames ARC3D
- Block structured Cartesian
- 5th-Order spatial discretization
- 3rd-Order explicit Runge-Kutta time
- Automated AMR
- Overset Communication
 - PUNDIT
 - Automated implicit hole cutting

NSU3D near-body

Helios Released Capabilities

Automated Off-Body AMR

- Why not simply refine to vorticity or Q-criterion?
 - User dials in feature and quantity to adapt to (ω_{adapt} or Q_{adapt})

Choosing appropriate refine criteria requires considerable user-expertise and tuning

case	C _T /σ	R	chord	Refine Criteria
UH-60 high speed	0.084	322 in	22 in	ω _{adapt} = 0.0045
V-22 hover	0.14	228 in	22 in	ω_{adapt} = 0.005
HART BVI descent	0.06	79 in	4.8 in	Q _{adapt} =0.0005

Manually determined through trial and error...

RDECOM Non-dimensional Feature Detection Algorithm

- Define f as Q-criteria normalized by shear strain
- Refine where f > 1, otherwise don't refine

Co- and Counter-Rotating

$$Q = \frac{1}{2}(||\Omega||^2 - ||S||^2), \quad f = Q$$
$$f = \frac{1}{2}\left(\frac{||\Omega||^2}{||S||^2} - 1\right)$$

Three-Dimensional Ring Torus

Kamkar, S. J., A.M. Wissink, V. Sankaran, A. Jameson, "Feature-Driven Cartesian Adaptive Mesh Refinement for Vortex-Dominated Flows," *Journal of Computational Physics*, Vol. 230, No. 16, July 2011, pp. 6271-6298.

Automated Off-Body AMR TRAM Rotor

feature detection with f = 1used for off-body refinement

	Figure of Merit	Difference	Mesh Points
Experiment	0.78	-	
Computation	0.773	-0.9% (+/- 0.2%)	86 M

- Finest mesh resolution applied to all regions of swirling flow
- Richardson-error refinement cutoff also available

Helios Multi-Rotor Support

- Current and future rotorcraft utilize multiple rotors
- Version 3 fully supports multi-rotor vehicle configurations
 - Multiple motion files (specified control angles)
 - CSD coupling with comprehensive analysis codes

 Image: state stat

Forward flight

Hypothetical coaxial TRAM

Hover

Sikorsky X2

CH47 (tandem)

What Can We Do? An Assessment of Current Capabilities

- Helios v3 applied to HART II case
 - 40% scaled Bo105 model rotor & "fuselage" tested in DNW windtunnel
 - Wake-based PIV measurements of vortex locations and strength

Helios simulation

Near-body: **3M nodes** Off-body: **200M-300M nodes** Requires ~4 days on 256 procs

0.025c spacing

Highly-resolved Off-body Grid

Compare PIVmeasured vorticity to computation

Tip Vortex Dissipation Near-body to Off-body

Presentation Outline

• Overview

RDECOM

- New capabilities
- Sample Results
- Strand Solver Developments
- Summary

Version 3 *Rainier*

Current Bottlenecks

Subset distance

Tip vortex expansion

Near-body unstructured grid generation ٠

- Not straightforward for the typical design engineer
- Fixed near-body subset distance
- Not adaptive

RDECOM

Lower order near-body solver

unstructured solver limited to 2nd-O (off-body Cartesian is 5th-O)

Computational Cost

Strand/Cartesian Approach

"Strand" near-body grid

- Straight line segments grown directly from surface tessellation
- Transitions from viscous spacing at surface to Cartesian off-body
- Automatic viscous mesh generation

•

•

Mesh Generation Directly from CAD

Step 1:

Generate Solid Geometry

- Available in modern CAD packages e.g. STEP files
- CREATE products that produce STEP include DaVinci, Capstone

Step 2: (automatic)

Tessellate Surface

- Supply desired resolution: Δx
- Parameters control resolution in high curvature regions, small protrusions

Mesh Generation RDECOM AMRDE **Directly from CAD (cont)** Step 3: (automatic) Δx Lifted **Near-body Strand Generation** surface surface geometry Surf - Surface Δx determines strand length Δx Multiple strands at convex corners Construct "lifted surface" with isotropic - R. Haimes Isotropic spacing Lifted surface defines multiple strands at convex edges/nodes Smoothing at concave corners Apply smoothing at concave corners - W. Chan

Step 4: (automatic)

Off-body Cartesian Generation

- Refine to lifted surface
- Telescope to resolve clipped strands

Push collapsed strands away from surf

Domain Connectivity

OSCAR: Automated Implicit hole cutting

- Donors identified for every point of every mesh
- All donor searches completed locally (since entire strand mesh description available to every processor)

Inverse maps accelerate donor search

- Holds indices of strand "super cell"
- Logarithmic inverse map for on-strand index search

- <u>Parallel Infrastructure for Cartesian And Strand Solvers</u>
 - Provides strand grid generation and adaptation with interfaces to surface meshing and geometry packages
 - Facilitates easy integration of new flow solvers, extensible.

Flow Solver

- Strand solver A. Katz
 - Cell-centered

RDECOM

- Reynolds-averaged Navier-Stokes
- No turbulence model (yet)
- Accommodates both prisms & hexes
- 2nd-Order spatial discretization
- Implicit psuedo-time marching
- Details in AIAA-2012-2779

Nested nonlinear multi-grid

- outer: FAS nonlinear MG
- Inner: nested linear subcycles

Cartesian Solver

- SAMARC solver used in Helios
- Details in AIAA-2010-4554

Green-Gauss surface integration

numerical flux:

$$\hat{\mathcal{F}} = \frac{1}{2} \left(\mathcal{F}(Q_L) + \mathcal{F}(Q_R) \right) - \mathcal{D}(Q_L, Q_R),$$

CUSP:

$$\mathcal{D}(Q_L, Q_R) = \frac{1}{2}\alpha^* c(Q_R - Q_L) + \frac{1}{2}\beta(\mathcal{F}(Q_R) - \mathcal{F}(Q_L)).$$

nodal projection gradients:

$$\frac{\partial Q}{\partial x} = \sum_{i} a_{xi} Q_i \tag{2}$$

Vorticity iso-surface

Vorticity contours

Summary

- Helios is a high-fidelity rotorcraft overset CFD/CSD analysis tool intended for DoD acquisition engineers
- Current CFD bottlenecks
 - Unstructured mesh generation non-trivial
 - Much of the wake dissipation occurs in near-body mesh
 - Near-body solver dominates computation time

• Strand technology a promising new approach

- Automatic viscous mesh generation directly from CAD solid geometry
- Parallel flow solver that exploits structure in normal direction
- Scalable domain connectivity

• First dedicated strand solver implemented in PICASSO

- Demonstrated automatic CAD-to-mesh for simple geometries
- Actively pursuing more complex cases

- Application of Helios v3 to candidate Joint Multi-Role acquisition designs
- Strand improvements

RDECOM

- Capability to handle multiple strands
- Turbulence models
- More complex geometries
- Higher order algorithms
- Near-body Mesh Adaptation
- Higher fidelity structural dynamics
 - Current CSD uses 1D beam elements
 - 3D dynamics finite element solver needed for composite blades/hubs
- Scalability to 1000's processors

Joint Multi-Role Concepts

Helios development team

Jain Burgess Katz Jayaraman Sitaraman Datta Wissink Potsdam Sankaran Strawn Mavriplis

Supported by the CREATE-AV (air vehicles) element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of Defense HPC Modernization Program Office.

