

11th Overset Grid Symposium, October 17 2012, Dayton OH

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Rohit Jain Mark Potsdam

Aeroflightdynamics Directorate (AMRDEC)
U. S. Army Research Development and Engineering Center
Moffett Field, California

Outline

- HELIOS Architecture
- Motivation
- Approach for Modularization and Integration
- Demonstration Examples
- Summary & Ongoing Work

HELIOS

 High-fidelity, automated software tool for rotorcraft aeromechanics modeling

- Sponsored by DoD HPCMO (CREATE-AV) and the US Army
- A framework Flexibility, Extensibility, Modularity
- GOALS: Accuracy, Speed, Ease-of-use (automation)

HELIOS Architecture

HELIOS Dual-mesh Approach

- ✓ Unstructured mesh solver for near-body regions
 - Fuselage, hub, blades
 - Direct CAD to CFD mesh generation
- √ Cartesian adaptive mesh solver for off-body regions

Why have the structured solver option?

- A near-future solution to an efficient, high-order near-body solver
 - o Long term solution high-order, strand-based solver, DG-based unstructured solvers...
- Use structured solver in combination with unstructured solver
 - > Structured solver for simple geometries/topologies
 - o Fast, high-order accurate (5th order)
 - Efficient (storage, domain decomposition)

rotor blade

- Acceleration methods (line relaxation, multi-grid)
- Mesh generation easy for simple geometries
- Unstructured solver for complex geometries hub, fuselage...

Why OVERFLOW?

Overset structured grid solver

- Validated for a wide variety of rotorcraft problems
 - Rotor, fuselage, hub, flaps, coaxial rotor system
 - Coupling with CSD (computational structural dynamics)
 - Steady and maneuver flights
 - Dynamic stall
- Key desirable features
 - High-order schemes
 - Near-body grid adaptation
 - Turbulence and transition modeling
- Industry users are vested
 - Effort spent in mesh generation, validation, developing know-hows...
- Continuously being developed and supported

Modularized OVERFLOW

Is a full-featured software...

Fluid Structure Interface (RCAS/CAMRADII/...)

What is retained in the modularized version?

- ✓ Mesh Motion (GMP/XML) & Mesh Deformation
- ✓ Near-body Connectivity (viscous stencil repair)
- **✓ FOMOCO**
- ✓ Parallel grid partitioning

What is not?

- X Off-body region
- x FSI
- X File-based CFD/CSD Coupling

Data Interface/Exchange

Near-body Connectivity Strategy AMRDEC

- > Group grids into Components/Bodies (blade, hub, fuselage...)
 - **➤** Use grid names in over.namelist

OVERFLOW COMMUNICATION

Intra-component grid connectivity & communication (viscous stencil repair)

HELIOS COMMUNICATION

- Inter-component grid connectivity & communication
- Components (near-body) to off-body communcation

Other components or off-body grids

Near-body Connectivity Strategy AMRDEC

Near-body Connectivity Strategy AMRDEC

OVERFLOW COMMUNICATION

Intra-component grid connectivity & communication

HELIOS COMMUNICATION

- Inter-component grid connectivity & communication
- Components (near-body) to off-body communication

Fluid Structure Interface

Traditional approach:

- integrate along blade grid line
- integration force/moment about quarter chord
- integration error, inconsistencies between CFD & CSD

New approach inherited from the HELIOS FSI module:

- integrate face-by-face on stitched FOMOCO surface
- convert to 1-D beam forcing based on principle of virtual work
- accurate, conservative
- applicable to large surface deformation and flapped rotor cases

Co-Visualization

- On-the-fly, parallel co-visualization
- Typically handy for large dataset simulation on remote clusters
- ➤ Slices, iso-surface, streamlines, point/line/surf probes
- User defined types

PYTHON WRAPPNG

Need access to FORTRAN-90 derived data types in OVERFLOW

Code Management

- A single, common source code repository
 - o make compiles standalone executable
 - o make library compiles the python version
 - preprocessor directives (#ifdef PYTHON)
 - o all python-related code contained in a separate python subdirectory
- HELIOS

Common python interface for NSU3D and OVERFLOW

Examples

- > Flow over a cylinder
- > Isolated rotor
- Multiple rotor
- ➤ Rotor-hub-fuselage
- ➤ Multiple rotor + fuselage

Flow Over a Cylinder

Flow Over a Cylinder

WALL-WALL/Nearbody-Nearbody overlap region overset communication and parallel partioning handled by OVERFLOW

Outer boundary overset communication handled by PUNDIT

Rotor with Prescribed Blade Deformations

Rotor with Prescribed Blade Deformations

Wall-wall overlap region overset communication b/w tip cap and blade grid handled by OVERFLOW

Outer boundary overset communication b/w near-body OVERFLOW grid and off-body SAMARC grid handled by PUNDIT

Coax Rotor

Two Near-body Solvers

Hub + Rotor

OVERFLOW: Hexahedrals

NSU3D: Tetrahedrals

SAMARC: Cartesian

Coax Rotor, Mixed Grids

Co-Visualization

Upper rotor: OVERFLOW (structured)

Lower rotor: NSU3D (unstructured)

Off-body: SAMARC (Cartesian)

Iso-surfaces of Q criterion computed on-the-fly using the ParaView plug-in

Hub + Rotor + Fuselage

Hub + Rotor + Fuselage

Notional hub geometry courtesy of Sikorsky Fuselage geometry courtesy of NASA Langley

Summary & Ongoing Work

- HELIOS's modular, python-based framework is flexible and extensible for incorporating new modules
- The OVERFLOW code has been modularized into a HELIOS component as a nearbody solver
- HELIOS framework supports multi-solver capability (NSU3D, OVERFLOW, SAMARC)
- Lends great flexibility to users

HELIOS Heli

Fluid-structure Interface

Co-visualization

Unstructured near-body

Implicit hole cutting

Off-body Adaptive Mesh Refinement (AMR)

Modular – future add ons

GUI

OVERFLOW

High-order near-body

Structured near-body

Near-body AMR

Turbulence and Transition Modeling

Efficiency

Future add ons

Ongoing work – Alpha testing, benchmarking, and validation

End