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Introduction

The goal is to softly land high mass vehicles (10s
of metric tons) on Mars

* Supersonic Retropropulsion (SRP) is a
potential method of deceleration

e Current method of supersonic parachutes
does not scale well past ~1 metric ton

 CFD s of increasing importance since flight
and experimental data at these conditions is
difficult to obtain

e CFD must first be validated at these
conditions
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 The EDL SA Team identified SRP as the only credible method of supersonic
deceleration for Exploration Class (100 metric tons) vehicles entering Mars



SRP Flow Structure

CFD of Daso et al (AIAA 2007-1423)
Sonic nozzle
M_=348,C,=04
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SRP Flow Structure

CFD of Daso et al (AIAA 2007-1423)
Sonic nozzle
M_=3.48,C, =04
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SRP Flow Structure

CFD of Daso et al (AIAA 2007-1423)
Sonic nozzle
M_=348,C. =04
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SRP Flow Structure

CFD of Daso et al (AIAA 2007-1423)
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CFD Validation Approach

Employ multiple solvers to the same SRP problems
 DPLR (Kerry Zarchi, ARC)
« FUN3D (Bil Kleb, LRC)
* OVERFLOW (Guy Schauerhamer, Jacobs/JSC)
Compare results between codes and with historical tunnel data
* Qualitative: Shock structure and standoff distance, unsteady behavior
* Quantitative: Surface pressure, forces and moments
Perform CFD-validation wind tunnel tests of SRP
* Complete run conditions, quantified tunnel uncertainties
* Higher thrust coefficients to better match flight requirements

Code-to-Code

DPLR
Comparisons . .
— P > \validation of
FUN3D Verification CED for SRP
\ Historical Tunnel Tests /
Code-to-Test
OVERFLOW CFD Validation Comparisons

Tunnel Tests



Wind Tunnel Model

« Air as freestream and jet gas.
* 4 removable nozzle plugs.

* 167 pressure taps including 7
high frequency pressure
transducers.

* High speed Schlieren video
(5-10 kfps).
« Same model used in both tests.
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Langley 4'x4’ Test

* Mach24,3.5,4.6

e C;supto3,acoupleaté6
Ames 9'x7’ Test

Wind Tunnel Tests

* Mach 1.8, 2.4
* Csuptol0

e Liguefaction in plumes
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OVERFLOW Best Practices for SRP

. Best practices based from LRC UPWT Run 165: 1-nozzle, Mach 4.6, C; 2
*  Grid refinement and time step sensitivity studies

*  Grids between 80 and 90 million points
* Time steps <= 1.71e-06 seconds
. 5 Newton subiterations
*  HLLE++ numerical flux function with Van Albada limiter for spatial terms
*  Symmetric Successive Over Relaxation (SSOR) algorithm with Newton dual time stepping for temporal terms.

*  Used Direct Eddy Simulation (DES) turbulence modeling with Menter’s Shear-Stress Transport (SST) as the Reynolds
Averaged Navier-Stokes (RANS) submodel.

*  For SST, used strain-based production term employing Wilcox’s realizability constraint
* Alljet-on cases were solved time-accurately.
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LRC Run 165 Qualitative Comparison

TEST

FUN3D

US3D

OVERFLOW

DPLR

CART3D

1-nozzle, Mach 4.6, C; 2.
Periodic unsteadiness.

Oscillating pressure
wave increases average
pressure on model face.

Movies not synced in
time.

US3D solution by Emre
Sozer (ARC)

Cart3D solution by Noel
Bahktian (Stanford) and
Michael Aftosmis (ARC)
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LRC Run 165 Comparisons
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Turbulence Modeling

Unsteady behavior was influenced by e 20

turbulence modeling.

* For SRP, limiting eddy viscosity
produced more realistic behavior

e Cart3Disinviscid

(@) 55T: Menter's baseline k- SST model ¥ (b) S5T-CC: 55T with Suzen and Hoffmann’s compressibility
correction. ¥

* Figure is ratio of eddy to laminar
viscosity for different turbulence
models, simulated with
OVERFLOW and FUN3D.

* For SRP simulations:
L] D P I_R use d SST—V . (€) SST-V: SST with vorticity-based production.? (d) SST-RC: 55T with Wilco's realizability constraint.®
* FUN3D used SA-DES

e OVERFLOW used SST-DES
and SST-RC

(e) SST-DES: 55T-based DES 2 (F) SA-DES: SA-based DES 3

Figure 20: The ratio of turbulent eddy viscosity to laminar (bulk) viscosity for various turbulence models. ]_7
Mote: No attempt was made to capture these instantaneous snapshots near the same point of the quasi-periodic cycle.



LRC Sting Sensitivity Study, 3-nozzle

L. 18




LRC Run 165 Comparisons

o 12° o 20°

TEST

FUN3D DPLR

OVERFLOW

Time = 0.000014 seconds Time = 0.000034 seconds Time = 0.000034 seconds



LRC Run 165 Comparisons
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LRC Run 262: 3-nozzle, Mach 4.6, C.=3

a0° x12° o 16°

FUN3D DPLR TEST

OVERFLOW
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LRC Run 262: 3-Nozzle, C;=3, a=12°

Bow shock
shedding impacts
model face and

side shell
0 (1:9 Constructed
' shadowgraph of
8'05 CFD solution
0.05
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Run 262: 3-Nozzle, C;=3, $=0°

* DPLR steadier than
FUN3D and
OVERFLOW (SST-
V vs DES)

e Large scatter in
neighboring
pressure ports on
the model
windward side shell

« FUN3D
overpredicts Cp on

model face fora 0°
and a=12°

 Deviation at nose
implies jet-to-jet
interactions
predicted differently
between codes

e Deviation at
shoulder implies
differences in shock
shedding impacting
the model face23
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Run 307 and 311: 4-Nozzle, C;=2, $=0°, 180°

Run 307 Run 311 * Runs only differ in roll angle.

e Short blunt behavior vs. large shock
standoff.

FUN3D DPLR TEST

OVERFLOW

24




Viscous Full Tunnel
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Ames Test




Ames Sting Sensitivity Study, 1-nozzle

Ames UPWT Time = 0.000044 seconds
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Run 223, B =0°, 4° 8° and 12°
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Run 141, B = 0°, 4°, 8° and 12°

Run 141
3-nozzle
Mach 2.4,C. 6

Run 141
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3-Nozzle, Mach 2.4, C; 10, Run 145

Time = 0.000044 seconds




Run 130,C; 6, =0°

 Comparisons with other codes

* DPLR reached steady state, captures side shell C, well.
 FUN3D and OVERFLOW simulations are similar

* OVERFLOW captures C, and nose and near nozzle

NASA Ames 9x7 Supersonic Wind Tunnel
Entry, Descent, and Landing Project
Supersonic Retropropulsion Test 97-0234
Scott.A.Berry@nasa.gov, Matthew.N.Rhode@nasa.gov
August 2011

Time 0.00 ms Recorded at 20,000 fps

Time = 0.000044 seconds
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4-Nozzle, Mach 1.8
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Large difference exists in data acquisition rates between the CFD and WTT.
» Average surface pressure is not comparable for this chaotic of a flowfield. 32



Thrust Dominance

Aerodynamic forces are small when

Run 145
3-nozzle
Mach 2.4, C; 10
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Computational Costs

* From the Ames post-test runs
* All cases run on Pleiades, either Nehalem or Westmere nodes
* Thisis not a perfect comparison
 DPLRis an average of three estimates
* FUN3D s from a single case (not an average)
« OVERFLOW is an average of six runs
* Need time accurate runs for predictions

*  Would need to cut down computational costs for parametric studies or database
generation.

CPU Hours Iterations CPU seconds/ iteration/
Solver per Case per Case Grid Points grid point
FUN3D 28000 39500 42M 6.1e-05
DPLR 44500 106000 53M 2.9e-05

OVERFLOW 35039 73500 85M 2.0e-05



Conclusions

* Bestagreement between WTT and CFD is for 1-nozzle cases and high thrust 3-nozzle
cases.

* Worst agreement was for low thrust 3-nozzle cases and high thrust 4-nozzle cases.
* 3-nozzle cases more steady at C;s > 4.
* 4-nozzle cases highly unsteady and chaotic at C;s >= 4.
« WTT averages spanning 2.5 seconds are probably not converged.
* CFD averages spanning < 0.01 seconds are not too comparable to WTT data.
* Large difference in data acquisition rates exists between codes and test.

* Testrate was 10 or 30 Hz (0.1 or 0.033 seconds per reading) for 2.5 seconds for
25 or 75 points per average.

* CFD rate was between 190 and 400 points over a maximum of 0.017 seconds.
* Frequencies captured by CFD not captured by test, and vice versa.

A “converged” average for CFD may be a completely different than the average
that was obtained by the test data acquisition system.

e Aero effects are small when compared to thrust.
 Computational costs high for validation, could be much less for production.



Future Work

* More steps need to be taken to better simulate
Mars EDL SRP

* NASA funding for SRP was discontinued in
Fiscal Year 2012

* Live rocket engine test including startup in
SRP conditions

* Sounding rocket test
* CFD of flight conditions
 Atmospheric and rocket

 SRPis an enabling technology which still needs
development

e Large-scale propulsion
* Aero/aerothermal analysis
* Vehicle design
« GN&C
* Additional funding avenues are being pursued

* SpaceX and the USAF are researching SRP
for Return To Launch Site capabilities

 Masten Space is interested in returning
rockets using SRP

36
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