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The goal is to softly land high mass vehicles (10s 
of metric tons) on Mars 

• Supersonic Retropropulsion (SRP)  is a 
potential method of deceleration 

• Current method of supersonic parachutes 
does not scale well past ~1 metric ton 

• CFD is of increasing importance since flight 
and experimental data at these conditions is 
difficult to obtain 

• CFD must first be validated at these 
conditions 
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Cianciolo, A. D., et al, 
“Overview Of The NASA 
Entry, Descent and 
Landing Systems 
Analysis Exploration 
Feed-Forward Study,” 
International Planetary 
Probe Workshop, 2011. 

• The EDL SA Team identified SRP as the only credible method of supersonic 
deceleration for Exploration Class (100 metric tons) vehicles entering Mars 
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CFD Validation Approach 
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Employ multiple solvers to the same SRP problems 
• DPLR (Kerry Zarchi, ARC) 
• FUN3D (Bil Kleb, LRC) 
• OVERFLOW (Guy Schauerhamer, Jacobs/JSC) 

Compare results between codes and with historical tunnel data 
• Qualitative: Shock structure and standoff distance, unsteady behavior 
• Quantitative: Surface pressure, forces and moments 

Perform CFD-validation wind tunnel tests of SRP 
• Complete run conditions, quantified tunnel uncertainties 
• Higher thrust coefficients to better match flight requirements 
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Wind Tunnel Model 
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• Air as freestream and jet gas. 

• 4 removable nozzle plugs. 

• 167 pressure taps including 7 

high frequency pressure 

transducers. 

• High speed Schlieren video    

(5-10 kfps). 

• Same model used in both tests. 

 



Wind Tunnel Tests 
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Langley 4’x4’ Test  

• Mach 2.4, 3.5, 4.6 

• CTs up to 3, a couple at 6 

Ames 9’x7’ Test  

• Mach 1.8, 2.4 

• CTs up to 10 

• Liquefaction in plumes 

LRC 

ARC 



Langley Test 



OVERFLOW Best Practices for SRP 
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• Best practices based from LRC UPWT Run 165: 1-nozzle, Mach 4.6, CT 2 

• Grid refinement and time step sensitivity studies 

• Grids between 80 and 90 million points 

• Time steps <= 1.71e-06 seconds 

• 5 Newton subiterations 

• HLLE++ numerical flux function with Van Albada limiter for spatial terms 

• Symmetric Successive Over Relaxation (SSOR) algorithm with Newton dual time stepping for temporal terms. 

• Used Direct Eddy Simulation (DES) turbulence modeling with Menter’s Shear-Stress Transport (SST) as the Reynolds 
Averaged Navier-Stokes (RANS) submodel. 

• For SST,  used strain-based production term employing Wilcox’s realizability constraint 

• All jet-on cases were solved time-accurately. 

 



Structured Overset Grid System 
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• Chimera Grid Tools script library- all configurations in single script 

• X-rays and DCF for domain connectivity 

 



LRC Run 165 Qualitative Comparison 

15 

• 1-nozzle, Mach 4.6, CT 2. 

• Periodic unsteadiness. 

• Oscillating pressure 
wave increases average 
pressure on model face. 

• Movies not synced in 
time. 

 

 

 

• US3D solution by Emre 
Sozer (ARC) 

• Cart3D solution by Noel 
Bahktian (Stanford) and 
Michael Aftosmis (ARC) 

 

 

 



LRC Run 165 Comparisons 
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• Capturing periodic 
oscillation in the triple 
point increased average 
pressure on the face. 

• All codes fall within 
tunnel uncertainty. 
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Turbulence Modeling 
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Unsteady behavior was influenced by 
turbulence modeling. 

• For SRP, limiting eddy viscosity 
produced more realistic behavior 

• Cart3D is inviscid 

• Figure is ratio of eddy to laminar 
viscosity for different turbulence 
models, simulated with 
OVERFLOW and FUN3D. 

• For SRP simulations: 

• DPLR used SST-V. 

• FUN3D used SA-DES 

• OVERFLOW used SST-DES 
and SST-RC 
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LRC Sting Sensitivity Study, 3-nozzle 



LRC Run 165 Comparisons 
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CA,total=CA,aero+CT 

LRC Run 165 Comparisons 



LRC Run 262: 3-nozzle, Mach 4.6, CT=3 
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LRC Run 262: 3-Nozzle, CT=3, α=12⁰ 



Run 262: 3-Nozzle, CT=3, φ=0⁰ 
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• DPLR steadier than 
FUN3D and 
OVERFLOW (SST-
V vs DES) 

• Large scatter in 
neighboring 
pressure ports on 
the model 
windward side shell 

• FUN3D 
overpredicts CP on 
model face for α=0⁰ 
and α=12⁰ 

• Deviation at nose 
implies jet-to-jet 
interactions 
predicted differently 
between codes 

• Deviation at 
shoulder implies 
differences in shock 
shedding impacting 
the model face 
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Run 307 and 311: 4-Nozzle, CT=2, φ=0°, 180° 

• Runs only differ in roll angle. 

• Short blunt behavior vs. large shock 
standoff. 

 



Viscous Full Tunnel 
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Ames Test 



Ames Sting Sensitivity Study, 1-nozzle 
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Run 223, β = 0⁰, 4⁰, 8⁰, and 12⁰ 
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Run 141, β = 0⁰, 4⁰, 8⁰, and 12⁰ 
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3-Nozzle, Mach 2.4, CT 10, Run 145 
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Run 130, CT 6, β = 0⁰ 
• Comparisons with other codes 

• DPLR reached steady state, captures side shell Cp well. 

• FUN3D and OVERFLOW simulations are similar 

• OVERFLOW captures Cp and nose and near nozzle 

 



4-Nozzle, Mach 1.8 
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Large difference exists in data acquisition rates between the CFD and WTT. 

• Average surface pressure is not comparable for this chaotic of a flowfield. 



Thrust Dominance 

 

 

Aerodynamic forces are small when 
compared to thrust. 

 

Are aerodynamic forces negligible? 

• Need to know entry angles 
and vehicle design 

• Scalability 
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Computational Costs 

34 

• From the Ames post-test runs 

• All cases run on Pleiades, either Nehalem or Westmere nodes 

• This is not a perfect comparison 

• DPLR is an average of three estimates 

• FUN3D is from a single case (not an average) 

• OVERFLOW is an average of six runs 

• Need time accurate runs for predictions 

• Would need to cut down computational costs for parametric studies or database 
generation. 

 
 

Solver 
CPU Hours 
per Case 

Iterations 
per Case 

 
Grid Points 

CPU seconds/ iteration/ 
grid point 

FUN3D 28000 39500 42M 6.1e-05 

DPLR 44500 106000 53M 2.9e-05 

OVERFLOW 35039 73500 85M 2.0e-05 



Conclusions 
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• Best agreement between WTT and CFD is for 1-nozzle cases and high thrust 3-nozzle 
cases. 

• Worst agreement was for low thrust 3-nozzle cases and high thrust 4-nozzle cases. 

• 3-nozzle cases more steady at CTs > 4. 

• 4-nozzle cases highly unsteady and chaotic at CTs >≈ 4. 

• WTT averages spanning 2.5 seconds are probably not converged. 

• CFD averages spanning < 0.01 seconds are not too comparable to WTT data. 

• Large difference in data acquisition rates exists between codes and test. 

• Test rate was 10 or 30 Hz (0.1 or 0.033 seconds per reading) for 2.5 seconds for 
25 or 75 points per average. 

• CFD rate was between 190 and 400 points over a maximum of 0.017 seconds. 

• Frequencies captured by CFD not captured by test, and vice versa. 

• A “converged” average for CFD may be a completely different than the average 
that was obtained by the test data acquisition system. 

• Aero effects are small when compared to thrust. 

• Computational costs high for validation, could be much less for production. 

 

 



• More steps need to be taken to better simulate 
Mars EDL SRP 

• NASA funding for SRP was discontinued in 
Fiscal Year 2012 

• Live rocket engine test including startup in 
SRP conditions 

• Sounding rocket test 

• CFD of flight conditions 

• Atmospheric and rocket 

• SRP is an enabling technology which still needs 
development 

• Large-scale propulsion 

• Aero/aerothermal analysis 

• Vehicle design 

• GN&C 

• Additional funding avenues are being pursued 

• SpaceX and the USAF are researching SRP 
for Return To Launch Site capabilities 

• Masten Space is interested in returning 
rockets using SRP 

 

Future Work 
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