

Aerodynamic Evaluation of the D8 "Double-Bubble" Aircraft Nacelle Design

Shishir Pandya, NASA Ames Research Center Overset Grid Symposium, Dayton, OH, Oct 16, 2012

Outline

- The D8
 - Concept
 - Goals
- Modeling and Mesh Topology
 - Use Cart3D inviscid mesh adaptation to guide overset viscous mesh
 - O-mesh with wake boxes
 - Mesh sensitivity
- Clean Configuration
 - Comparison with experiment
 - Independent verification of D8 concepts
- Podded Nacelle
 - Geometry
 - Results

MIT D8 "Double-Bubble" Aircraft

- MIT team concept of N+3 advanced vehicle configuration
 - -Lower fuel burn
 - –Lower noise
 - -Reduce emissions
- 180 passengers
- 3000 nmi range
- 118 ft span
- ~Boeing 737 size

MIT/Pratt & Whitney/Aurora D Series

Airframe & Propulsion Technology Overview

Fuselage Advantages

- "Double-bubble" fuselage provides more lift
 —Gives partial span-wise loading / smaller wing
- Shorter cabin (wider body)
 —Results in lighter landing gear support structure
- Provides a nose-up pitching moment
 - -Shrinks horizontal tail
 - -Lighter horizontal tail

Lower Cruise Speed

- M=0.72
 - -Lower sweep wing
 - Reduced structural load => Lower weight
 - Increased CL
 - Can eliminate high-lift devices
 - -Proper speed at engine fan face (M=0.6)
 - Reduces nacelle, inlet size
- Reduced nacelle drag
 - –Nacelles embedded in the π -tail and fuselage
 - -Reduced size, weight

M. Drela, MIT

Embedded Rear-Mounted Engines

- Boundary Layer Ingesting (BLI) engines for propulsive efficiency
 Fans like flow at ~ M=0.6
 - -Thicker boundary layer in the rear
 - -Designed for M=0.6 flow around engine inlet area
 - -Distortion tolerant fan
 - -High bypass ratio (~20)
- Lower engine-out yaw
 –Reduced vertical tail size
- Noise shield

Wind Tunnel Tests

- Wright brothers wind tunnel at MIT
 - –Low speed (100 and 120 mph) \approx M=0.15
 - -Clean configuration: α=0, 1.9, 4.4, 6.6, 8.8, 11, 13.3
 - -Re_c≈0.5 Million
 - -1:20 scale model
 - Tests complete
 - -1:11 scale model
 - Being constructed
 - w/, w/o empennage
 - Podded nacelle
 - Blended nacelle

different

Goals of This Work

- Independent assessment of the D8 design assumptions
 - –Is the "double-bubble" fuselage advantageous?
 - Does it provide lift in the range of 10 to 20%?
 - Does it provide a nose-up pitching moment?
 - -Boundary Layer Ingestion (BLI)
 - Quantify flow diffusion from fuselage geometry resulting in lower speed at the fan face
- Validate Overflow against the wind tunnel tests

 Use best practices for nacelle assessment
- Assess nacelle performance using Overflow

-Clean vs. Podded vs. Embedded

Simulations

- 120 mph (M=0.16)
- Alpha sweep: -2° to 14° in 2° increments
 –Half-body cases (symmetry assumed)
- Steady, turbulent flow
- Clean configuration
 - —in Free-air
 - -w/WT
 - –w/WT+mount/fairing
- Podded
- Embedded (geometry, mesh generation in progress)

Outline

- The D8
- Modeling and Mesh Topology
 - Use Cart3D inviscid mesh adaptation to guide overset viscous mesh
 - -O-mesh with wake boxes
 - -Mesh sensitivity
- Clean Configuration
- Podded Nacelle

Component based inviscid solver

-Automated mesh generation, complex geometries

 Adjoint-based adaptive mesh refinement used —Takes place of a lot of user time and expertise

Overflow

- Overset mesh generation follows
 - -Overset best practices
 - -Guidance from Cart3D adaptive refinement

- Finite difference
 - Beam-Warming (approximate factorization/central difference)
 - -Scalar dissipation
- Turbulence model (SA, SST) with target y⁺≈1

Wake Grid with O-Grid Topology

- Eliminate C- mesh
- Wake capture
- Tip vortex resolution

Mesh Sensitivity

- Test each parameter independently
 - -Wall spacing (y⁺)
 - -Near-wall stretching ratio
 - -Surface spacing
 - LE, TE, ...
 - -Off-body spacing
- Study done at α=0°
 –SA turb. model

Production Mesh

- Tested each parameter independently (α =0°, SA)
 - -Wall-normal spacing (tested 0.5 to 5)
 - 0.00016 => y⁺ ≈ 1
 - -Stretching ratio (tested 1.1 to 1.25)
 - 1.15
 - -Surface spacing (tested LE spacing of 0.025 to 0.3%)
 - LE spacing ≈ 0.006 (0.1% chord)
 - TE spacing ≈ 0.003 (0.05% chord)
 - Inboard airfoil covered by ~550 points
 - Outboard airfoil covered by ~300 points
 - -Off-body spacing (tested 0.1 to 0.3)
 - 0.15

Solution Consistency, Sensitivity

- Pegasus vs. Xrays vs. c3Lib
 —lift varies 2.9%, drag varies 1.1%
- AF vs. Diagonal vs. Roe vs. HLLC —lift varies 3%, drag varies 1.4%
- Low-Mach pre-conditioner
 –No change in lift and drag
- Unsteady algorithm
 - -Flow remained steady with minor change in lift and drag
- Various WT Inlet/Exit Boundary Conditions
 —Minor variations in integrated forces

Outline

- The D8 Concept/Goals
- Modeling and Mesh Topology
- Clean Configuration
 - -Comparison with experiment
 - -Independent verification of D8 concepts
- Podded Nacelle

C_L Comparison

C_D Comparison

0.003

Span-wise Loading

Pi-tail has minimum negative loading

Component-wise Break-down

Boundary Layer Ingestion

Outline

- The D8 Concept/Goals
- Modeling and Mesh Topology
- Clean Configuration
- Podded nacelle
 - -Geometry
 - -Results
- Embedded nacelle

Podded Nacelle

- In free-stream
 - –Under-wing
 - –Between π-tail
 - –Side-mount
- Nacelle/Hub/Pylon
 - -7 additional grids
 - One for each component
 - Two collar grids
 - -Fuselage/pylon, nacelle/pylon
 - Two caps for the hub
 - -nose, base

Podded Nacelle

Podded Nacelle

- Flow-through nacelle
- CL, CD increments w/rt clean configuration
 - -Lower CL
 - –Higher CD
- Compare w/ embedded
- Engine model

Outline

- The D8 Concept/Goals
- Modeling and Mesh Topology
- Clean Configuration
- Podded nacelle

Conclusions

- CFD predictions validate basic ideas behind D8
 - –Fuselage carries ~15% of the lift at cruise
 - -Fuselage provides a positive pitching moment at cruise
 - -Rear of the fuselage acts as diffuser
- CL, CD compare well to the experiment —Better agreement with SST
- Podded: Results in increased drag, reduced lift as expected

Future Work

- Placement of Podded Nacelles
- Blended Nacelles
 - -Original configuration
 - Three-engine
 - -Present concept
 - Two-engine
 - -Geometry, mesh, CL, CD increments
 - CGT
 - Blender Sub-D surfaces for C-2 continuity?
- Fan model (pressure disk, rotating blades?)

Acknowledgements

This work is funded by NASA's Fundamental Aeronautics Program under the Fixed Wing Project

- MIT
- -Mark Drela
- -Ed Greitzer
- -Bob Haimes
- -Alejandra Uranga

- NASA Ames
- –William Chan
- -Cetin Kiris
- -Nateri Madavan
- -Mike Olsen
- -Thomas Pulliam
- -Mike Rogers