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In this work our target applications are high-speed compressible flows with 
embedded deforming or rigid solids

 Example: Mach-2 shock impacting rigid sticks  Example: Mach-2 shock impacting 
deformable sticks
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• Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006)
1. advance fluid (using interface velocity/position from the solid)

2. advance solid (apply fluid forces to the solid)

• This approach suffers instability for light solids (added mass instability)

• Our new interface projection approach 
1. project solution at the interface

2. advance fluid and solid

• Added mass instabilities can be avoided

• Stability is proved via. normal mode theory

• The analysis reveals very useful mathematical structure in FSI problems

• Added mass instabilities are discussed elsewhere in the literature, for example
• Causin, Grebeau, and Nobile, 2005

• Gretarsson, Kwatra, and Fedkiw 2011

We are developing a new interface projection methodology to eliminate added 
mass instabilities in partitioned schemes
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Added mass instabilities can arise if the effect of displaced fluid is not 
appropriately accounted for

 in a vacuum

 force

 Body simply moves according to 
Newton’s laws of motion
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Added mass instabilities can arise if the effect of displaced fluid is not 
appropriately accounted for

 in a vacuum  in a fluid

 force

 Body simply moves according to 
Newton’s laws of motion

 Body must displace and entrain fluid to move 
and therefore appears more massive than in 

vacuum ... the so called “added mass”

 force

 fluid contributing 
to added mass
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Deforming Composite Grids (DCGs) are an efficient way to discretize PDEs in 
deforming and/or moving geometry

• Overlapping grids are the foundation of DCGs

• Benefits of this approach include:
- Local and rapid grid generation (hyperbolic grid generator)
- High quality grids even under large displacements and rotations
- High efficiency through the use of structured and Cartesian grids
- Grid construction that supports high-order discretizations

• We use the Overture and CG software packages
- www.llnl.gov/CASC/Overture

t=1.0 t=1.5 t=2.0

solids

fluid

deforming interfaces
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• Fluid solver: we solve the inviscid Euler equations with a second-order extension 
of Godunov’s method (cgcns)

- WDH, D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using Overlapping Grids 
with Adaptive Mesh Refinement, J. Comput. Phys. 227 (2008)
- WDH, D. W. Schwendeman, An Adaptive Numerical Scheme for High-Speed Reactive Flow on 
Overlapping Grids, J. Comput. Phys. 191 (2003)

• Solid solver: we solve the elastic wave equations as a first-order system with a 
second-order upwind scheme (cgsm)

- D. Appelö, JWB, WDH, D. W. Schwendeman, Numerical Methods for Solid Mechanics on Overlapping 
Grids: Linear Elasticity, J. Comput. Phys. 231 (2012)

• Multidomain coupler: we use an interface projection scheme which is stable 
across the entire range of material parameters, including for light solids (cgmp)

- JWB, WDH, B. Sjögreen, A stable FSI algorithm for light rigid bodies in compressible flows, LLNL-
JRNL-558232, submitted
- B. Sjögreen, JWB, Stability of Finite Difference Discretizations of Multi-Physics Interface Conditions, 
Commun. Comput. Phys., 13 (2013)
- JWB, WDH, D. W. Schwendeman, Deforming Composite Grids for Solving Fluid Structure Problems, J. 
Comput. Phys. 231 (2012)
- JWB, B. Sjögreen, A normal mode stability analysis of numerical interface conditions for fluid-structure 
interaction, Commun. Comput. Phys., 10 (2011)

We pursue a partitioned approach for maximal efficiency and flexibility
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The elastic piston - a 1D FSI model problem

solid

ρ̄ : density
ū : displacement
v̄ : velocity
σ̄ : stress
cp : speed of sound
z̄ = ρ̄cp : impedance

fluid

ρ : density

v : velocity
σ = −p : stress, pressure
a : speed of sound
z = ρa : impedance

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 11 / 28






∂tρ+ ∂x(ρv) = 0

∂t(ρv) + ∂x(ρv
2 + p) = 0

∂t(ρE) + ∂x(ρEv + pv) = 0






∂tū− v̄ = 0

ρ̄∂tv̄ − ∂x̄σ̄ = 0

∂tσ̄ − ρ̄c2p∂x̄v̄ = 0

Linear Elasticity Euler Equations

Interface Coupling Conditions
�
v̄(x̄, t) = v(x, t),

σ̄(x̄, t) = σ(x, t) ≡ −p(x, t) + pe

Greengard’s Axiom: “It never hurts to start my writing down the exact 
solution to the problem”
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The elastic piston

x

t
x = F (t)
x̄ = 0

C+

(x , t)

(F (τ), τ)

x = a0t
2

4

ρ0
v0
p0

3

5

x̄ = −cpt
2

4

ū0(x̄)
v̄0(x̄)
σ̄0(x̄)

3

5

fluidsolid

The governing equations for the solid and fluid are
8

>

<

>

:

ūt − v̄ = 0
v̄t − σ̄x̄/ρ̄ = 0

σ̄t − ρ̄c2p v̄x̄ = 0
, for x̄ < 0,

8

>

<

>

:

ρt + (ρv)x = 0

(ρv)t + (ρv2 + p)x = 0
(ρE)t + (ρEv + pv)x = 0

, for x > F (t),

where ρE = p/(γ − 1) + ρv2/2. The interface conditions are

v̄(0, t) = v(F (t), t),
σ̄(0, t) = σ(F (t), t) ≡ −p(F (t), t) + pe.

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 12 / 28

• We call this the “elastic piston” problem

Greengard’s Axiom: “It never hurts to start my writing down the exact 
solution to the problem”
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By localizing the elastic piston problem we obtain a fluid structure Riemann 
problem (FSRP) that can be used for FSI coupling

The elastic piston - a 1D FSI model problem

solid

ρ̄ : density
ū : displacement
v̄ : velocity
σ̄ : stress
cp : speed of sound
z̄ = ρ̄cp : impedance

fluid

ρ : density

v : velocity
σ = −p : stress, pressure
a : speed of sound
z = ρa : impedance

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 11 / 28

• This is a specific case of the elastic piston problem
- Constant states in fluid and solid

• Exact solutions to the linear and nonlinear problem are easily found

x

t

x = G(t)
x̄ = 0

x = St

x = (v∗ + a∗)t

x = (v0 + a0)t




ρ0
v0
p0








ρ∗

v∗

p∗




x̄ = −cpt

�
v̄∗

σ̄∗

�

�
v̄0
σ̄0

�

fluidsolid

Figure 2: The x-t diagram for the fluid-solid Riemann problem. The wave on the right may be a shock with speed S or an
expansion fan. The interface between the fluid and solid is given by x̄ = 0 in the solid and x = v∗t = v̄∗t.

equations for this problem, we introduce a fluid stress σ = −p + pe and the corresponding constant states
σ0 = −p0 + pe and σ∗ = −p∗ + pe. The linearized equations are






∂tū− v̄ = 0

∂tv̄ − (1/ρ̄)∂x̄σ̄ = 0

∂tσ̄ − ρ̄c2p∂x̄v̄ = 0

, for x̄ < 0,






∂tρ+ v0∂xρ+ ρ0∂xv = 0

∂tv + v0∂xv − (1/ρ0)∂xσ = 0

∂tσ + v0∂xσ − ρ0a
2
0∂xv = 0

, for x > v0t. (8)

The characteristic relations for these hyperbolic equations are

�
dū/dt = v̄, on dx̄/dt = 0,

z̄v̄ ∓ σ̄ = z̄v̄0 ∓ σ̄0, on dx̄/dt = ±cp,

�
a20ρ+ σ = a20ρ0 + σ0, on dx/dt = v0,

zv ∓ σ = zv0 ∓ σ0, on dx/dt = v0 ± a0,
(9)

where z̄ = ρ̄cp and z = ρ0a0 are the acoustic impedances of the solid and fluid, respectively. Using the
equations in (9) for the C+ characteristic in the solid and the C− characteristic in the fluid, along with the
interface conditions �

v̄(x̄, t) = v(x, t),

σ̄(x̄, t) = σ(x, t),
for x = v0t and x̄ = 0, (10)

gives z̄v∗ − σ∗ = z̄v̄0 − σ̄0 and zv∗ + σ∗ = zv0 + σ0. Whence,

v∗ = v̄∗ =
z̄v̄0 + zv0
z̄ + z

+
σ0 − σ̄0

z̄ + z
, (11)

σ∗ = σ̄∗ =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1
+

v0 − v̄0
z̄−1 + z−1

. (12)

The density of the fluid adjacent to the interface is given by ρ∗ = ρ0 − (σ∗ − σ0)/a20, which is obtained using
the C0 characteristic equation in (9) that holds along particle paths dx/dt = v0 in the fluid. This condition
is a linearized form of the entropy condition

ρ∗ = ρ0(p
∗/p0)

1/γ . (13)

In practice, we have found this latter condition to be preferable to the lineared form for use in numerical
simulations. Denote this solution, (11), (12) and (13) to the linearized FSR problem by

[ρ∗, v∗, p∗; v̄∗, σ̄∗] = LFSR(ρ0, v0, p0; v̄0, σ̄0). (14)

The results in (11) and (12) show that the velocity and stress in the fluid (and in the solid) adjacent to the
interface are given by impedance-weighted combinations of the initial states of the fluid and solid. In particu-
lar, we note that the commonly used velocity-from-solid/stress-from-fluid (VS/SF) interface approximation,
vI = v̄∗ and σI = σ∗, corresponds to (11) and (12) in the limit of a heavy solid, i.e. z/z̄ → 0, provided we
also neglect the terms proportional to σ0 − σ̄0 and v0 − v̄0. (For smooth solutions these latter terms are
approximations to the interface conditions themselves and so are small.) The results in (11), (12) and (13)
are used later to derive discrete approximations for the states on either side of the fluid-solid interface.

7
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The solution at the interface is defined in terms of solutions to the FSRP

vI =
z̄v̄0 + zv0
z̄ + z

+
σ0 − σ̄0

z̄ + z

σI =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1
+

v0 − v̄0
z̄−1 + z−1

ρI = ρ0(pI/p0)
1/γ

• Along the interface, the solution is projected using solutions to local FSRPs

• The traditional FSI coupling is the large impedance (mass) limit
- velocity from solid 
- stress from fluid

• The traditional scheme is unstable for light solids

• The new scheme is stable for any ratio of masses and impedances 

• For proofs see JWB, B. Sjögreen, A normal mode stability analysis of numerical interface conditions for 
fluid-structure interaction, Commun. Comput. Phys., 10 (2011)

• Here                 and                   are acoustic impedances

The interface projection step

Using the linearized FSR solution, the interface values are an impedance
weighted average of the provisional fluid and solid values:

vI =
z̄v̄0 + zv0
z̄ + z +

σ0 − σ̄0
z̄ + z ,

σI =
z̄−1σ̄0 + z−1σ0
z̄−1 + z−1 +

v0 − v̄0
z̄−1 + z−1

Compare: the standard FSI scheme uses the heavy solid limit, z̄ " z,
velocity-from-solid, stress-from-fluid:

vI = v̄0
σI = σ0 = −p + pe

The standard scheme is unstable for light solids.

Note: for hard problems with shocks hitting the interface, there are
advantages to using the full nonlinear solution to the FSR problem.

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 19 / 28

vI = v̄0
σI = σ0 = −p0 + pe

z̄ = ρ̄cp z = ρ0a0
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The deforming diffuser solution can be used to investigate convergence in 2D
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interface
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solid domain Ω̄

displacement BC
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(0,F(0))

(1,F(1))

(0, yb)

(0, ya)

(xc, yc)

(xd, yd)

Figure 12: The geometry and boundary conditions for the deforming diffuser FSI problem. The right-angles indicated in the
solid domain apply to the undeformed reference state.

that joins the three points (1,F(1)), (xd, ye) and (xd, yd), where ye = F(1)− (xd − 1)/F �
(1). The smoothed

curve is defined using the integral of hyperbolic tangent functions (see [39] for full details). We call this

smooth (C∞
) representation of a piecewise linear curve a smoothed polygon. The choice of this boundary

curve is not particularly important since it does not significantly affect the results, provided the curve is

sufficiently smooth.

The boundary conditions on the solid are taken as slip-wall on the left and right, and a displacement

boundary condition (ū = 0) on the bottom. The boundary conditions on the fluid are taken as steady

supersonic inflow on the left with (ρ, u, v, p) = (ρ0, u0, 0, p0) (all variables given), supersonic inflow on the

top (all variables set to the exact solution), and supersonic outflow on the right (all variables extrapolated

to second order). The interface conditions in (3) are imposed on the expanding wall, y = F(x).
A semi-analytic solution to the deforming diffuser problem can be determined as follows. Given the fluid

inflow conditions (ρ0, u0, 0, p0) and (the to be determined) interface curve, y = F(x), the solution in the

fluid domain can by found using the method of characteristics and the well-known Prandtl-Meyer function

(see for example [20] or [26] for further details). In particular, this solution gives an analytic expression for

the fluid pressure on the interface as a function of the interface shape which we denote by p = P(x,F(x)).
This relationship between the fluid pressure and the shape of the interface provides a nonlinear boundary

condition for the solid in Ω̄. This boundary condition is

n̄(x̄) · σ̄(x̄) = −(P(x̄+ ū,F(x̄+ ū))− p0)n(x̄+ ū), for x̄ = (x̄,F0(x̄)) with x̄ ∈ (0, 1). (44)

Here n̄ is the normal to the solid reference domain (i.e. the normal to the curve ȳ = F0(x̄)) while n(x̄+ ū) is
the normal to the deformed fluid domain (i.e. the normal to the curve y = F(x)). We now have a well-defined

problem for the solid in Ω̄ consisting of the equations of steady elasticity with the boundary condition in (44)

on ȳ = F0(x̄) and the boundary conditions shown in Figure 12 on the remaining sides.

The boundary-value problem defined for the solid is solved numerically for the components of displacement

using a second-order accurate (centered) finite-difference scheme. The equations are nonlinear due to the

boundary condition in (44), and a method of iteration is needed to solve them. Using a provisional choice for

the shape of the interface in (44), the (linear) equations can be solved for the components of displacement,

which are then used to update the shape of the interface. Repeating this procedure defines a simple fixed-

point iteration which converges rapidly. The converged solution for the solid gives a discrete approximation

for the interface curve, y = F(x), and this curve, in turn, specifies the solution in the fluid domain. We solve

the boundary-value problem for the solid on a grid with 1280 × 512 points. This fine-grid solution for the

solid domain, together with the analytic Prandtl-Meyer solution in the fluid domain, is taken as the exact
solution of the deforming diffuser problem.

We now define the actual geometry and parameters used in the numerical computations. The reference

23

• A coupled semi-analytic smooth solution is determined:

- Fluid: Prandtl-Meyer analytic solution as a function of F(x)

- Solid: steady elasticity equations are solved on a very fine grid

- The coupled exact solution and F(x) are determined by iteration

Tuesday, October 30, 2012



The deforming diffuser solution can be used to investigate convergence in 2D

A

B

A = (0,F(0))
B = (1,F(1))

(0, yb)
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(xc, yc)

(xd, yd)

p

|σ̄|
p

1.0

0.5

|σ̄|

.05

0.0

Figure 13: Left: Composite grid G(4)
dd for the deforming diffuser problem showing the deformed grid in the lower solid domain.

Right: computed solution on grid G(16)
dd showing contours of the fluid pressure and norm of the solid stress tensor.

(un-deformed) interface curve is taken as

ȳ = F0(x̄) =
m0 +m1

2
(x̄− x0) +

m1 −m0

2β
log(2 cosh(β(x̄− x0))) (45)

for 0 < x̄ < 1, where the initial and final slopes are m0 = 0 and m1 = −0.2, respectively, and x0 = .5
and β = 10.0. The thickness of the solid domain is taken to be hs = 0.4 which we use to define ya = −hs,
xc = 1 + m1hs/

�
1 +m2

1 and yc = F0(1) − hs/
�

1 +m2
1. The parameters that define the vertices of the

fluid domain are taken to be yb = 0.5, xd = 1.075 and yd = 0.5. The parameters that define the gas flowing
into the fluid domain are ρ0 = 1.4, u0 = 2, p0 = 1 and γ = 1.4, which corresponds to a supersonic flow with
Mach number equal to 2. For the solid we use ρ̄ = λ = µ = 10.

The composite grid for the deforming diffuser FSI problem is shown in Figure 13. Let G(j)
dd denote the

composite grid of resolution factor j which has a grid spacing approximately equal to ∆s(j) = 1/(10j).
The grid for the solid domain is defined by linear transfinite interpolation between the top and bottom
boundary curves for Ω̄. The overlapping grid for the fluid domain consists of three component grids: a
(deforming) hyperbolic grid with fixed normal distance of 0.1 for the region next to the interface, a (static)
smoothed-polygon grid of normal distance 0.1 for the right end, and a (static) background Cartesian grid.
The hyperbolic grid is generated with the hyperbolic grid generator as discussed Section 5.3. The smoothed-
polygon grid is determined by extending normals from the (previously defined) smoothed-polygon curve for
the right boundary.

The initial conditions for the computations are taken from the exact (semi-analytic) solution and we
integrate the equations to t = 1. Note that time-dependent equations are solved in both the fluid and solid
domains using our FSI-DCG approach, and no attempt is made to integrate to within a (small) specified
tolerance of steady state as this could take an impractically long time. Figure 13 shows shaded contours of

the computed solution at t = 1 on grid G(16)
dd . The pressure of the gas decreases as it expands around the

wall, and the straight contour lines indicate a simple-wave solution in agreement with the exact solution.
The decreased pressure in the gas downstream of the bend in the wall results in an upward deflection of the
fluid-solid interface. This upward deflection from the undeformed reference state creates a non-zero stress
field in the solid as shown in the figure.

The maximum errors at t = 1 are given in Tables 10 and 11 for two cases. The high-order Godunov
based method for the fluid domain has a slope-limiter which can locally reduce the order of accuracy of the
scheme in certain situations, and we present results with the limiter turned off and on. Table 11 gives the
max-norm convergence rates for the case when the slope-limiter is turned off. We note that the convergence
rates are close to 2 for all of the fluid variables. The convergence rates for the velocity and stress in the
solid are also 2, approximately, while the displacement appears to be converging at a rate somewhat higher
than 2. Table 11 shows the convergence rates when the slope-limiter is turned on, and the results indicate a
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Solid Fluid

Grid E(∞)
ū r E(∞)

v̄ r E(∞)
σ̄ r E(∞)

ρ r E(∞)
v r E(∞)

T r

G(2)
dd 1.6e-4 2.8e-4 2.9e-2 3.4e-2 2.1e-2 7.0e-3

G(4)
dd 3.3e-5 4.8 1.1e-4 2.6 8.9e-3 3.3 8.6e-3 3.9 6.3e-3 3.4 1.9e-3 3.8

G(8)
dd 5.6e-6 5.9 2.8e-5 3.9 1.8e-3 5.0 2.2e-3 3.8 2.1e-3 3.0 5.9e-4 3.2

G(16)
dd 9.4e-7 5.9 6.8e-6 4.1 3.5e-4 5.0 5.8e-4 3.8 4.7e-4 4.4 1.3e-4 4.4

rate 2.48 1.81 2.14 1.95 1.81 1.88

• Max norm convergence verifies second-order accuracy
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The superseismic shock problem is used to demonstrate convergence for 
problems with discontinuities

Fluid Solid

Grid E(∞)
ρ r E(∞)

v r E(∞)
T r E(∞)

ū r E(∞)
v̄ r E(∞)

σ̄ r

G(4)
ep 3.7e-5 4.0e-4 2.5e-4 4.4e-5 2.8e-5 4.2e-5

G(8)
ep 8.0e-6 4.7 8.0e-5 4.9 4.9e-5 5.1 1.2e-5 3.6 5.6e-6 4.9 7.5e-6 5.7

G(16)
ep 2.2e-6 3.6 2.2e-5 3.6 1.0e-5 4.9 3.2e-6 3.8 1.2e-6 4.8 1.4e-6 5.4

G(32)
ep 5.9e-7 3.8 5.9e-6 3.8 2.2e-6 4.6 8.2e-7 3.9 2.6e-7 4.6 3.1e-7 4.5

rate 1.99 2.01 2.27 1.91 2.25 2.37

Table 8: Two-dimensional elastic piston. Max-norm errors at t = 0.7 for a smoothly receding piston.
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Figure 9: Flow structure for the superseismic shock problem showing the fluid shock, solid p-wave, solid s-wave and the
fluid-solid interface. The pattern propagates to the right at speed S.

behind the shock, respectively. For the solid, let w̄k = [ūk, v̄k, σ̄k], k = 0, 1, 2, denote the state ahead of the
p-wave (k = 0), the state between the p- and s-waves (k = 1), and the state behind the s-wave (k = 2). A
slip between the fluid and solid velocities in the upstream state is allowed so that v01 need not be zero. This
upstream slip is introduced in order to produce a solution with no slip in the post-shock region. We have
found that a strong slip in the post-shock region can enhance the growth of physical interface instabilities
and cause the formation of small Scholte waves (a Scholte wave [38] is a wave that travels along the interface
between a solid and a fluid) and thus we consider a solution with no post-shock slip in order to avoid the
appearance of such waves.

We consider an exact solution of the superseismic-shock problem for a fluid with γ = 1.4 and initial state
[ρ0, v01 , v

0
2 , p

0] = [0.1,−1.812303, 0, 0.02], and for a solid with parameters [ρ̄,λ, µ] = [5, 1, .5] and zero initial
state w̄0 = [ū0, v̄0, σ̄0] = 0. When the shock junction moves with speed S = .7, the shock angle is found to
be ξ = .05894547 (to the number of digits shown). From these parameters, the solution values for the other
fluid and solid states can be computed directly using the formulae in Appendix C. For reference we provide
these values here (to 4 significant figures). The post-shock fluid state is

[ρ1, v11 , v
1
2 , p

1] = [.4908, .1811,−.1176, .5208].

The solid states are given by

ū1 = −αp(κ
p · x̄− cpt)a

p, ū2 = ū1 − αs(κ
s · x̄− cst)a

s, (42)

v̄1 = αpcpa
p, v̄2 = v̄1 + αscsa

s. (43)

with cp = .6325, cs = .3162, αp = .3736, αs = −.1146, κp = ap = [.9035,−.4286], κs = [.4518,−.8921]
(as = [−κs

2,κ
s
1]). The solid stress states σ̄1 and σ̄2 can be computed from the corresponding displacement

states (42) using the stress-strain relationship. The interface deflection angle is θ = .2230 while the p- and
s-wave angles are ηp = .4429 and ηs = 1.102, respectively.

Numerical solutions to the superseismic problem may be obtained using the FSI-DCG approach. This is
done by performing computations in the reference frame fixed with the pre-shock solid as shown in Figure 9.

20

t = 0 t = 1

fluid

solid
x = Ce(s)E(0)

E(1)

interpolation

interface

Figure 10: The overlapping grid G(4)
ss for the superseismic shock problem. The grid is shown at times t = 0 and t = 1. The

overlapping grid for the fluid domain consists of the blue, green and cyan grids. The green interface grid deforms to match the
interface. The blue and cyan grids are static. The red grid for the solid domain is shown adjusted for the displacement.

The composite grid for this calculation is denoted by G(j)
ss , where j denotes the grid resolution with grid

spacing equal to ∆s(j) = 1/(10j) approximately. The grid G(4)
ss is shown in Figure 10 at t = 0 and t = 1.

The grid at t = 0 is constructed based on the initial state given by the exact solution, while the grid at t = 1
is determined by the numerical solution at that time. The overlapping grid for the fluid domain consists
of three component grids. A blue background Cartesian grid for the rectangle [−1, 1] × [−.35, .5], a green
hyperbolic grid of normal width 5∆s(j) adjacent to the interface, and a cyan hyperbolic grid with normal
width 7∆s(j) adjacent to the end curve Ce. The green hyperbolic grid deforms with the interface as the
solution evolves in time, whereas the other two fluid grids are static. Grid points on these latter two static
grids near the overlap with the deforming grid become exposed in time as the interface deflects downward.
The end curve x = Ce(s) is a straight line that follows the exact motion of the material interface point E(t)
shown in Figure 10. As time evolves, E(t) moves downward and to the right as the interface deflects. The
grid for the reference solid domain consists of the red Cartesian grid for the rectangle [−1, 1]× [−.5, .0]. The
solid grid shown in the figure is adjusted for the computed displacement.

The numerical calculation requires initial conditions and boundary conditions. Initial conditions for the
fluid and solid domains are taken from the exact solution. In addition, the fluid grids at time t = −∆t and
−2∆t are provided as part of the exact initial conditions so that the initial grid velocities and boundary
accelerations can be accurately computed using finite differences in time following the approach described in
Section 5.1. The conditions at the fluid-solid interface are computed using the FSI-DCG approach, whereas
the boundary conditions on the perimeter of the fluid and solid domains are taken as Dirichlet conditions
using the exact solution in time.

Figure 11 shows shaded contours of the solution to the superseismic shock problem at t = 1 computed

using the grid G(64)
ss . (This grid with∆s(64) = 1/640 has a total of about 1.1×106 grid points.) The numerical

solution in the solid is shown in the deformed space x = x̄ + ū. Note that the s-wave angle ηs = 1.102 in
the undeformed space becomes �ηs = .8947 in the deformed space. The shock in the fluid, the p- and s-wave
shocks in the solid, and the fluid-solid interface are clearly visible in the shaded contour plot. Also evident
are usual artifacts in the fluid density that are due to the initial conditions and a slight mismatch between
the solution and exact boundary condition at the upper wall, together with small reflections in the solid
where the p-wave intersects the lower boundary. Table 9 presents the discrete L1-norm errors and estimated
convergence rates for a sequence of grids of increasing resolution. The discrete Lp-norm for a grid function
vi is defined in terms of the solution values at all active grid points divided by the total number of active
points, N,

�vi�p =

�
1

N

�

i

|vi|p
�1/p

.

For the error in (possibly) vector and matrix-valued grid functions, we take the error to be the maximum,
over all components, of the L1-norm errors of the individual components, for example

E(1)
v = max

�
�v1,i − ve1,i�1 , �v2,i − ve2,i�1

�
,

where v1,i and v2,i are the two components of the vector-valued grid function vi, and the corresponding
quantities with superscript e are the exact values on the grid. For the solid domain, the estimated L1-

norm convergence rates are close to the expected values of 4/3 for E(1)
ū , and of 2/3 for E(1)

v̄ and E(1)
σ̄ . The
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convergence rates for the fluid variables (E(1)
ρ , E(1)

v , E(1)
T ) are all equal to 1 approximately. A convergence

rate of 1 would be the expected rate for the computation of an isolated fluid shock and indicates that the

slower convergence rate of E(1)
v̄ and E(1)

σ̄ in the solid does not seem to degrade the convergence rate of the

fluid variables. This is not so surprising given that the errors are largest at the solution discontinuities and

not at the interface.

shock

p-wave
s-wave

interface

ρ

v̄2

Figure 11: The superseismic shock solution computed on grid G(64)
ss showing contours at t = 1.0 of the density, ρ, in the fluid

domain and the vertical velocity, v̄2, in the solid domain.

Solid Fluid

Grid E(1)
ū r E(1)

v̄ r E(1)
σ̄ r E(1)

ρ r E(1)
v r E(1)

T r

G(4)
ss 8.9e-4 6.4e-3 1.8e-2 5.9e-3 3.8e-2 1.2e-2

G(8)
ss 3.2e-4 2.8 3.9e-3 1.6 1.1e-2 1.6 2.9e-3 2.0 1.7e-2 2.2 6.7e-3 1.8

G(16)
ss 1.4e-4 2.4 2.4e-3 1.7 6.7e-3 1.7 1.6e-3 1.9 8.6e-3 2.0 3.7e-3 1.8

G(32)
ss 6.7e-5 2.0 1.4e-3 1.6 4.1e-3 1.6 8.2e-4 1.9 4.3e-3 2.0 1.9e-3 1.9

rate 1.24 0.72 0.72 0.94 1.03 0.88

Table 9: Superseismic shock convergence results. Discrete L1-norm errors at t = 1.0.

6.3. The deforming diffuser

The deforming diffuser problem consists of a steady supersonic flow in a deformable expanding channel.

We consider the flow in the vicinity of the lower wall of the channel as illustrated in Figure 12. The shape

of the deformable wall is determined by a balance between the fluid pressure and the stresses in the solid.

Ideally, the problem would be defined on a semi-infinite domain, but side boundaries are introduced for

numerical convenience as shown in the figure. The geometry of the problem can be arranged so that the

solution remains smooth with no shocks in the fluid domain and no corner-singularities in the solid. It is

also possible to obtain a semi-analytical solution of the steady problem, and thus this solution can be used

to check whether the computed FSI-DCG solution is second-order accurate in the max-norm for smooth

two-dimensional flow.

We start by defining the geometry of the problem with reference to Figure 12 and later provide the

actual values for the geometrical parameters that are used for the numerical results. Let y = F(x) denote

the deformed shape of the wall for which the fluid and solid tractions balance exactly, and let ȳ = F0(x̄)
denote the shape of the wall in the reference (un-deformed) solid. The reference domain Ω̄ for the solid is

thus bounded on the top by the curve ȳ = F0(x̄), x̄ ∈ [0, 1]. The sides of Ω̄ are straight lines which meet the

two ends of the reference curve ȳ = F0(x̄) at right angles. The bottom boundary of Ω̄ is defined by the cubic

Hermite polynomial ȳ = B0(x̄) that passes through the points (0, ya) and (xc, yc) and meets the adjacent

sides at right angles. The solid reference domain is chosen so that all corners are right angles. This, together

with the choice of boundary conditions given below, means that potential corner singularities in the solid

solution are avoided.

The fluid domain Ω is bounded by straight lines on the left and top and by y = F(x) on the bottom. The

boundary curve on the right-hand side of Ω is defined as a smoothed version of the piecewise linear curve
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The superseismic shock problem is used to demonstrate convergence for 
problems with discontinuities

Fluid Solid

Grid E(∞)
ρ r E(∞)

v r E(∞)
T r E(∞)

ū r E(∞)
v̄ r E(∞)

σ̄ r

G(4)
ep 3.7e-5 4.0e-4 2.5e-4 4.4e-5 2.8e-5 4.2e-5

G(8)
ep 8.0e-6 4.7 8.0e-5 4.9 4.9e-5 5.1 1.2e-5 3.6 5.6e-6 4.9 7.5e-6 5.7

G(16)
ep 2.2e-6 3.6 2.2e-5 3.6 1.0e-5 4.9 3.2e-6 3.8 1.2e-6 4.8 1.4e-6 5.4

G(32)
ep 5.9e-7 3.8 5.9e-6 3.8 2.2e-6 4.6 8.2e-7 3.9 2.6e-7 4.6 3.1e-7 4.5

rate 1.99 2.01 2.27 1.91 2.25 2.37

Table 8: Two-dimensional elastic piston. Max-norm errors at t = 0.7 for a smoothly receding piston.
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Figure 9: Flow structure for the superseismic shock problem showing the fluid shock, solid p-wave, solid s-wave and the
fluid-solid interface. The pattern propagates to the right at speed S.

behind the shock, respectively. For the solid, let w̄k = [ūk, v̄k, σ̄k], k = 0, 1, 2, denote the state ahead of the
p-wave (k = 0), the state between the p- and s-waves (k = 1), and the state behind the s-wave (k = 2). A
slip between the fluid and solid velocities in the upstream state is allowed so that v01 need not be zero. This
upstream slip is introduced in order to produce a solution with no slip in the post-shock region. We have
found that a strong slip in the post-shock region can enhance the growth of physical interface instabilities
and cause the formation of small Scholte waves (a Scholte wave [38] is a wave that travels along the interface
between a solid and a fluid) and thus we consider a solution with no post-shock slip in order to avoid the
appearance of such waves.

We consider an exact solution of the superseismic-shock problem for a fluid with γ = 1.4 and initial state
[ρ0, v01 , v

0
2 , p

0] = [0.1,−1.812303, 0, 0.02], and for a solid with parameters [ρ̄,λ, µ] = [5, 1, .5] and zero initial
state w̄0 = [ū0, v̄0, σ̄0] = 0. When the shock junction moves with speed S = .7, the shock angle is found to
be ξ = .05894547 (to the number of digits shown). From these parameters, the solution values for the other
fluid and solid states can be computed directly using the formulae in Appendix C. For reference we provide
these values here (to 4 significant figures). The post-shock fluid state is

[ρ1, v11 , v
1
2 , p

1] = [.4908, .1811,−.1176, .5208].

The solid states are given by

ū1 = −αp(κ
p · x̄− cpt)a

p, ū2 = ū1 − αs(κ
s · x̄− cst)a

s, (42)

v̄1 = αpcpa
p, v̄2 = v̄1 + αscsa

s. (43)

with cp = .6325, cs = .3162, αp = .3736, αs = −.1146, κp = ap = [.9035,−.4286], κs = [.4518,−.8921]
(as = [−κs

2,κ
s
1]). The solid stress states σ̄1 and σ̄2 can be computed from the corresponding displacement

states (42) using the stress-strain relationship. The interface deflection angle is θ = .2230 while the p- and
s-wave angles are ηp = .4429 and ηs = 1.102, respectively.

Numerical solutions to the superseismic problem may be obtained using the FSI-DCG approach. This is
done by performing computations in the reference frame fixed with the pre-shock solid as shown in Figure 9.
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Figure 10: The overlapping grid G(4)
ss for the superseismic shock problem. The grid is shown at times t = 0 and t = 1. The

overlapping grid for the fluid domain consists of the blue, green and cyan grids. The green interface grid deforms to match the
interface. The blue and cyan grids are static. The red grid for the solid domain is shown adjusted for the displacement.

The composite grid for this calculation is denoted by G(j)
ss , where j denotes the grid resolution with grid

spacing equal to ∆s(j) = 1/(10j) approximately. The grid G(4)
ss is shown in Figure 10 at t = 0 and t = 1.

The grid at t = 0 is constructed based on the initial state given by the exact solution, while the grid at t = 1
is determined by the numerical solution at that time. The overlapping grid for the fluid domain consists
of three component grids. A blue background Cartesian grid for the rectangle [−1, 1] × [−.35, .5], a green
hyperbolic grid of normal width 5∆s(j) adjacent to the interface, and a cyan hyperbolic grid with normal
width 7∆s(j) adjacent to the end curve Ce. The green hyperbolic grid deforms with the interface as the
solution evolves in time, whereas the other two fluid grids are static. Grid points on these latter two static
grids near the overlap with the deforming grid become exposed in time as the interface deflects downward.
The end curve x = Ce(s) is a straight line that follows the exact motion of the material interface point E(t)
shown in Figure 10. As time evolves, E(t) moves downward and to the right as the interface deflects. The
grid for the reference solid domain consists of the red Cartesian grid for the rectangle [−1, 1]× [−.5, .0]. The
solid grid shown in the figure is adjusted for the computed displacement.

The numerical calculation requires initial conditions and boundary conditions. Initial conditions for the
fluid and solid domains are taken from the exact solution. In addition, the fluid grids at time t = −∆t and
−2∆t are provided as part of the exact initial conditions so that the initial grid velocities and boundary
accelerations can be accurately computed using finite differences in time following the approach described in
Section 5.1. The conditions at the fluid-solid interface are computed using the FSI-DCG approach, whereas
the boundary conditions on the perimeter of the fluid and solid domains are taken as Dirichlet conditions
using the exact solution in time.

Figure 11 shows shaded contours of the solution to the superseismic shock problem at t = 1 computed

using the grid G(64)
ss . (This grid with∆s(64) = 1/640 has a total of about 1.1×106 grid points.) The numerical

solution in the solid is shown in the deformed space x = x̄ + ū. Note that the s-wave angle ηs = 1.102 in
the undeformed space becomes �ηs = .8947 in the deformed space. The shock in the fluid, the p- and s-wave
shocks in the solid, and the fluid-solid interface are clearly visible in the shaded contour plot. Also evident
are usual artifacts in the fluid density that are due to the initial conditions and a slight mismatch between
the solution and exact boundary condition at the upper wall, together with small reflections in the solid
where the p-wave intersects the lower boundary. Table 9 presents the discrete L1-norm errors and estimated
convergence rates for a sequence of grids of increasing resolution. The discrete Lp-norm for a grid function
vi is defined in terms of the solution values at all active grid points divided by the total number of active
points, N,

�vi�p =

�
1

N

�

i

|vi|p
�1/p

.

For the error in (possibly) vector and matrix-valued grid functions, we take the error to be the maximum,
over all components, of the L1-norm errors of the individual components, for example

E(1)
v = max

�
�v1,i − ve1,i�1 , �v2,i − ve2,i�1

�
,

where v1,i and v2,i are the two components of the vector-valued grid function vi, and the corresponding
quantities with superscript e are the exact values on the grid. For the solid domain, the estimated L1-

norm convergence rates are close to the expected values of 4/3 for E(1)
ū , and of 2/3 for E(1)

v̄ and E(1)
σ̄ . The
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convergence rates for the fluid variables (E(1)
ρ , E(1)

v , E(1)
T ) are all equal to 1 approximately. A convergence

rate of 1 would be the expected rate for the computation of an isolated fluid shock and indicates that the

slower convergence rate of E(1)
v̄ and E(1)

σ̄ in the solid does not seem to degrade the convergence rate of the

fluid variables. This is not so surprising given that the errors are largest at the solution discontinuities and

not at the interface.

shock

p-wave
s-wave

interface

ρ

v̄2

Figure 11: The superseismic shock solution computed on grid G(64)
ss showing contours at t = 1.0 of the density, ρ, in the fluid

domain and the vertical velocity, v̄2, in the solid domain.

Solid Fluid

Grid E(1)
ū r E(1)

v̄ r E(1)
σ̄ r E(1)

ρ r E(1)
v r E(1)

T r

G(4)
ss 8.9e-4 6.4e-3 1.8e-2 5.9e-3 3.8e-2 1.2e-2

G(8)
ss 3.2e-4 2.8 3.9e-3 1.6 1.1e-2 1.6 2.9e-3 2.0 1.7e-2 2.2 6.7e-3 1.8

G(16)
ss 1.4e-4 2.4 2.4e-3 1.7 6.7e-3 1.7 1.6e-3 1.9 8.6e-3 2.0 3.7e-3 1.8

G(32)
ss 6.7e-5 2.0 1.4e-3 1.6 4.1e-3 1.6 8.2e-4 1.9 4.3e-3 2.0 1.9e-3 1.9

rate 1.24 0.72 0.72 0.94 1.03 0.88

Table 9: Superseismic shock convergence results. Discrete L1-norm errors at t = 1.0.

6.3. The deforming diffuser

The deforming diffuser problem consists of a steady supersonic flow in a deformable expanding channel.

We consider the flow in the vicinity of the lower wall of the channel as illustrated in Figure 12. The shape

of the deformable wall is determined by a balance between the fluid pressure and the stresses in the solid.

Ideally, the problem would be defined on a semi-infinite domain, but side boundaries are introduced for

numerical convenience as shown in the figure. The geometry of the problem can be arranged so that the

solution remains smooth with no shocks in the fluid domain and no corner-singularities in the solid. It is

also possible to obtain a semi-analytical solution of the steady problem, and thus this solution can be used

to check whether the computed FSI-DCG solution is second-order accurate in the max-norm for smooth

two-dimensional flow.

We start by defining the geometry of the problem with reference to Figure 12 and later provide the

actual values for the geometrical parameters that are used for the numerical results. Let y = F(x) denote

the deformed shape of the wall for which the fluid and solid tractions balance exactly, and let ȳ = F0(x̄)
denote the shape of the wall in the reference (un-deformed) solid. The reference domain Ω̄ for the solid is

thus bounded on the top by the curve ȳ = F0(x̄), x̄ ∈ [0, 1]. The sides of Ω̄ are straight lines which meet the

two ends of the reference curve ȳ = F0(x̄) at right angles. The bottom boundary of Ω̄ is defined by the cubic

Hermite polynomial ȳ = B0(x̄) that passes through the points (0, ya) and (xc, yc) and meets the adjacent

sides at right angles. The solid reference domain is chosen so that all corners are right angles. This, together

with the choice of boundary conditions given below, means that potential corner singularities in the solid

solution are avoided.

The fluid domain Ω is bounded by straight lines on the left and top and by y = F(x) on the bottom. The

boundary curve on the right-hand side of Ω is defined as a smoothed version of the piecewise linear curve
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The superseismic shock problem is used to demonstrate convergence for 
problems with discontinuities

Fluid Solid

Grid E(∞)
ρ r E(∞)

v r E(∞)
T r E(∞)

ū r E(∞)
v̄ r E(∞)

σ̄ r

G(4)
ep 3.7e-5 4.0e-4 2.5e-4 4.4e-5 2.8e-5 4.2e-5

G(8)
ep 8.0e-6 4.7 8.0e-5 4.9 4.9e-5 5.1 1.2e-5 3.6 5.6e-6 4.9 7.5e-6 5.7

G(16)
ep 2.2e-6 3.6 2.2e-5 3.6 1.0e-5 4.9 3.2e-6 3.8 1.2e-6 4.8 1.4e-6 5.4

G(32)
ep 5.9e-7 3.8 5.9e-6 3.8 2.2e-6 4.6 8.2e-7 3.9 2.6e-7 4.6 3.1e-7 4.5

rate 1.99 2.01 2.27 1.91 2.25 2.37

Table 8: Two-dimensional elastic piston. Max-norm errors at t = 0.7 for a smoothly receding piston.
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Figure 9: Flow structure for the superseismic shock problem showing the fluid shock, solid p-wave, solid s-wave and the
fluid-solid interface. The pattern propagates to the right at speed S.

behind the shock, respectively. For the solid, let w̄k = [ūk, v̄k, σ̄k], k = 0, 1, 2, denote the state ahead of the
p-wave (k = 0), the state between the p- and s-waves (k = 1), and the state behind the s-wave (k = 2). A
slip between the fluid and solid velocities in the upstream state is allowed so that v01 need not be zero. This
upstream slip is introduced in order to produce a solution with no slip in the post-shock region. We have
found that a strong slip in the post-shock region can enhance the growth of physical interface instabilities
and cause the formation of small Scholte waves (a Scholte wave [38] is a wave that travels along the interface
between a solid and a fluid) and thus we consider a solution with no post-shock slip in order to avoid the
appearance of such waves.

We consider an exact solution of the superseismic-shock problem for a fluid with γ = 1.4 and initial state
[ρ0, v01 , v

0
2 , p

0] = [0.1,−1.812303, 0, 0.02], and for a solid with parameters [ρ̄,λ, µ] = [5, 1, .5] and zero initial
state w̄0 = [ū0, v̄0, σ̄0] = 0. When the shock junction moves with speed S = .7, the shock angle is found to
be ξ = .05894547 (to the number of digits shown). From these parameters, the solution values for the other
fluid and solid states can be computed directly using the formulae in Appendix C. For reference we provide
these values here (to 4 significant figures). The post-shock fluid state is

[ρ1, v11 , v
1
2 , p

1] = [.4908, .1811,−.1176, .5208].

The solid states are given by

ū1 = −αp(κ
p · x̄− cpt)a

p, ū2 = ū1 − αs(κ
s · x̄− cst)a

s, (42)

v̄1 = αpcpa
p, v̄2 = v̄1 + αscsa

s. (43)

with cp = .6325, cs = .3162, αp = .3736, αs = −.1146, κp = ap = [.9035,−.4286], κs = [.4518,−.8921]
(as = [−κs

2,κ
s
1]). The solid stress states σ̄1 and σ̄2 can be computed from the corresponding displacement

states (42) using the stress-strain relationship. The interface deflection angle is θ = .2230 while the p- and
s-wave angles are ηp = .4429 and ηs = 1.102, respectively.

Numerical solutions to the superseismic problem may be obtained using the FSI-DCG approach. This is
done by performing computations in the reference frame fixed with the pre-shock solid as shown in Figure 9.
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Solid Fluid

Grid E(1)
ū r E(1)

v̄ r E(1)
σ̄ r E(1)

ρ r E(1)
v r E(1)

T r

G(4)
ss 8.9e-4 6.4e-3 1.8e-2 5.9e-3 3.8e-2 1.2e-2

G(8)
ss 3.2e-4 2.8 3.9e-3 1.6 1.1e-2 1.6 2.9e-3 2.0 1.7e-2 2.2 6.7e-3 1.8

G(16)
ss 1.4e-4 2.4 2.4e-3 1.7 6.7e-3 1.7 1.6e-3 1.9 8.6e-3 2.0 3.7e-3 1.8

G(32)
ss 6.7e-5 2.0 1.4e-3 1.6 4.1e-3 1.6 8.2e-4 1.9 4.3e-3 2.0 1.9e-3 1.9

rate 1.24 0.72 0.72 0.94 1.03 0.88

• L-1 norm convergence results demonstrate expected behavior
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Self-convergence is measured for a difficult problem of a fluid cylinder impacted 
by a solid compression wave

p-wave shock

fluid

solid
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Figure 14: Left: geometry for the simulation of an elastic shock impacting a deforming fluid cylinder. Right: the composite

grid G(1)
dc showing the two solid grids and the two fluid grids.
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Figure 15: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the norm
of the solid stress, |σ̄|, in the solid domain. Results are shown for the light solid, ρr = 0.1, at times t = 0.5, 1.0 and 1.5.
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Figure 16: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the
stress-norm |σ̄|, in the solid domain. Results are shown for the medium solid, ρr = 1.0, at times t = 0.5, 1.0 and 1.5.

reflected wave in the solid is a p-wave, which is clearly visible for each case, while there is a reflected s-wave
lagging behind. This s-wave is most easily seen in the plots for ρr = 1 and 10. For the light-solid case, the
interaction of the p-wave in the solid with the heavier fluid in the cavity generates small-amplitude acoustic
waves in the fluid (as indicated by the small range of density represented by the colorbar). The cavity itself
suffers only a small deflection as a result of the interaction. For the medium-solid and heavy-solid cases,
the interaction with the fluid-filled cavity is stronger leading to the formation of a shock in the fluid. The
compression of the cavity and the elevated pressure behind the shock lead to a lateral bulging of the cavity
and an increase in stress in the solid in the vicinity of lateral sides of the cavity. This is seen most clearly in
the heavy-solid case at t = 1.5.

It is worth noting that computations of the low and medium-density solid cases, ρr = 0.1 and ρr = 1, both
fail due to numerical instabilities when the standard velocity-from-solid/stress-from-fluid interface approach
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Solid Fluid

Grid E(1)
ū r E(1)

v̄ r E(1)
σ̄ r E(1)

ρ r E(1)
v r E(1)

T r

G(4)
dc 1.7e-4 1.1e-3 1.3e-3 4.1e-3 2.3e-3 4.2e-3

G(8)
dc 7.9e-5 2.1 6.9e-4 1.6 7.9e-4 1.6 2.2e-3 1.8 1.3e-3 1.8 2.3e-3 1.8

G(64)
dc 8.3e-6 9.5 1.5e-4 4.5 1.8e-4 4.3 3.6e-4 6.3 2.1e-4 6.1 3.7e-4 6.2

rate 1.08 0.72 0.71 0.88 0.87 0.88

• L-1 norm convergence results demonstrate expected behavior
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Stability of partitioned solver for a variety of fluid/solid densities is demonstrated
(example of solid compression wave impacting fluid cavity)
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Figure 14: Left: geometry for the simulation of an elastic shock impacting a deforming fluid cylinder. Right: the composite

grid G(1)
dc showing the two solid grids and the two fluid grids.
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Figure 15: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the norm
of the solid stress, |σ̄|, in the solid domain. Results are shown for the light solid, ρr = 0.1, at times t = 0.5, 1.0 and 1.5.

ρ

1.258

.993

|σ̄|

.49

0.0

t = 0.5 t = 1.0 t = 1.5

Figure 16: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the
stress-norm |σ̄|, in the solid domain. Results are shown for the medium solid, ρr = 1.0, at times t = 0.5, 1.0 and 1.5.

reflected wave in the solid is a p-wave, which is clearly visible for each case, while there is a reflected s-wave
lagging behind. This s-wave is most easily seen in the plots for ρr = 1 and 10. For the light-solid case, the
interaction of the p-wave in the solid with the heavier fluid in the cavity generates small-amplitude acoustic
waves in the fluid (as indicated by the small range of density represented by the colorbar). The cavity itself
suffers only a small deflection as a result of the interaction. For the medium-solid and heavy-solid cases,
the interaction with the fluid-filled cavity is stronger leading to the formation of a shock in the fluid. The
compression of the cavity and the elevated pressure behind the shock lead to a lateral bulging of the cavity
and an increase in stress in the solid in the vicinity of lateral sides of the cavity. This is seen most clearly in
the heavy-solid case at t = 1.5.

It is worth noting that computations of the low and medium-density solid cases, ρr = 0.1 and ρr = 1, both
fail due to numerical instabilities when the standard velocity-from-solid/stress-from-fluid interface approach
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Figure 17: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the
stress-norm |σ̄|, in the solid domain. Results are shown for the heavy solid, ρr = 10., at times t = 0.5, 1.0 and 1.5.

is used. In contrast, the calculations presented here use the interface approximation based on the fluid-solid

Riemann problem and no numerical instability is observed.

To estimate the accuracy of the computed solution, we solve the problem on a sequence of grids of

increasing resolution. Given solutions on three grids of increasing resolution, a posteriori estimates of the

error and convergence rates can be computed using the procedure described in [30]. Estimated L1-norm

errors and convergence rates are given in Table 12 for the medium-density solid case ρr = 1 (similar results

are obtained for the light and heavy cases). The rates are computed using the grids G(4)
dc , G(8)

dc and G(64)
dc .

Having the last grid significantly finer than the previous grids generally provides better estimated convergence

rates for wave propagation problems with linear discontinuities in which solutions converge slowly, as is the

case here. As seen from the table, convergence rates of approximately 0.7 for E(1)
v̄ and E(1)

σ̄ are reasonably

close to the expected value of 2/3. The convergence rates for the fluid variables of approximately 0.87 are

somewhat less than the expected value of 1 for an isolated fluid calculation, but this is not unexpected here

given that the fluid solution is strongly driven by the shocks in the solid which are converging at a rate

near 0.7.

Solid Fluid

Grid E(1)
ū r E(1)

v̄ r E(1)
σ̄ r E(1)

ρ r E(1)
v r E(1)

T r

G(4)
dc 1.7e-4 1.1e-3 1.3e-3 4.1e-3 2.3e-3 4.2e-3

G(8)
dc 7.9e-5 2.1 6.9e-4 1.6 7.9e-4 1.6 2.2e-3 1.8 1.3e-3 1.8 2.3e-3 1.8

G(64)
dc 8.3e-6 9.5 1.5e-4 4.5 1.8e-4 4.3 3.6e-4 6.3 2.1e-4 6.1 3.7e-4 6.2

rate 1.08 0.72 0.71 0.88 0.87 0.88

Table 12: Estimated L1-norm errors and converge rates for the elastic shock hitting a fluid cavity, medium-density solid,
ρr = 1.0. Note that the grid spacing on the finest grid is 8 times smaller than the previous resolution.

6.5. A shock impacting two deformable sticks

In this section, we consider the simulation of a fluid shock impacting two deformable sticks as shown in

Figure 19. The main purpose of this computation is to demonstrate the ability of the FSI-DCG approach

to treat problems with large displacements while retaining high-quality grids. We recognize that the use of

a linear elastic model for the solids in this simulation is somewhat questionable from a physical standpoint

since this solid model does not properly treat large strains or rotations, but this does not detract from the

main purpose of this calculation.

The geometry of the problem consists of the large rectangular domain R = [−5, 20]× [−10, 10] with two

embedded solid sticks. Each stick is a smoothed-polygon approximation to the rectangular domain of width

0.5 and height 4. The lower stick is centered at (0,−2.1) and defines the solid domain Ω̄1 ≈ [−.25, .25] ×
[−4.1,−.1]. The upper stick is centered at (0, 2.1) and defines the domain Ω̄2 ≈ [−.25, .25] × [.1, 4.1]. The

fluid domain at time zero is then Ω(0) = R− Ω̄1 − Ω̄2. Let G(j)
ds denote the composite grid for this geometry

with ∆s(j) = 1/(10j), approximately. Figure 18 shows closeups of the grid G(4)
ds at three different times

during the calculation. The grids next to the interface are hyperbolic grids with normal width 5∆s(j) for
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Figure 14: Left: geometry for the simulation of an elastic shock impacting a deforming fluid cylinder. Right: the composite

grid G(1)
dc showing the two solid grids and the two fluid grids.
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Figure 15: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the norm
of the solid stress, |σ̄|, in the solid domain. Results are shown for the light solid, ρr = 0.1, at times t = 0.5, 1.0 and 1.5.
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Figure 16: An elastic shock hitting a fluid filled deformable cylinder showing the density, ρ, in the fluid domain and the
stress-norm |σ̄|, in the solid domain. Results are shown for the medium solid, ρr = 1.0, at times t = 0.5, 1.0 and 1.5.

reflected wave in the solid is a p-wave, which is clearly visible for each case, while there is a reflected s-wave
lagging behind. This s-wave is most easily seen in the plots for ρr = 1 and 10. For the light-solid case, the
interaction of the p-wave in the solid with the heavier fluid in the cavity generates small-amplitude acoustic
waves in the fluid (as indicated by the small range of density represented by the colorbar). The cavity itself
suffers only a small deflection as a result of the interaction. For the medium-solid and heavy-solid cases,
the interaction with the fluid-filled cavity is stronger leading to the formation of a shock in the fluid. The
compression of the cavity and the elevated pressure behind the shock lead to a lateral bulging of the cavity
and an increase in stress in the solid in the vicinity of lateral sides of the cavity. This is seen most clearly in
the heavy-solid case at t = 1.5.

It is worth noting that computations of the low and medium-density solid cases, ρr = 0.1 and ρr = 1, both
fail due to numerical instabilities when the standard velocity-from-solid/stress-from-fluid interface approach
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The key lessons for the case of deforming bodies

• By embedding the solution to a local Riemann problem, we arrive at a stable partitioned 
FSI algorithm for compressible flow and deforming structures

• Stability and accuracy can be proven and demonstrated

• Overlapping grids are an efficient and powerful framework to implement the algorithm

• In some sense, the fact that the Riemann problem plays a key role is not surprising, and 
one major advance in this work was to show how to embed the solution via projection

• For the case of rigid bodies, it is not immediately obvious how to make use of these 
developments

vI =
z̄v̄0 + zv0
z̄ + z

+
σ0 − σ̄0

z̄ + z

σI =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1
+

v0 − v̄0
z̄−1 + z−1
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For rigid bodies the principle is the same, but the details are more subtle

x

t

x = rb(t)

vb,σb

C− : σ + zv = σ0 + zv0

v0,σ0

bodyfb fluid

Figure 1: The x-t diagram for the one-dimensional fluid/rigid-body problem.

Substituting (26) into (23) gives an equation for the motion of the body that only depends on the initial data in
the fluid and the external body force,

mbv̇b = σ0(rb + st)Ab + zAb

�
v0(rb + st)− vb

�
+ fb(t), (27)

ṙb = vb. (28)

This equation can be written in the form,

mbv̇b + zAbvb = σ0(rb + st)Ab + zAbv0(rb + st) + fb(t), (29)

ṙb = vb, (30)

where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero.

In practical implementation, it is often beneficial to localize (26) in space and time. Using χ(t) = χ(t− �) along
the C− characteristic and letting � → 0 leads to the relation

σ(rb, t) = σ(rb+, t−) + z
�
v(rb+, t−)− vb(t)

�
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal distance
backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection strategy
and can be generalized to a multidimensional problem as is done in Section 6. Furthermore, notice the similarity of
(31) to equation (20). This hints at the close connection between (31) and the projection schemes evaluated in [1, 2, 3]
for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of the one-dimensional FSI model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig. 2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by

∂
∂t

�
vL
σL

�
−

�
0 1

ρL
ρLc

2
L 0

�
∂
∂x

�
vL
σL

�
= 0, for x < −wb

2
, (32)

while those for the fluid in the right domain are

∂
∂t

�
vR
σR

�
−

�
0 1

ρR
ρRc

2
R 0

�
∂
∂x

�
vR
σR

�
= 0, for x >

wb

2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2
− σL|x=−wb/2

. (35)

6






∂tρ+ v̂∂xρ+ ρ̂∂xv = 0

∂tv + v̂∂xv − (1/ρ̂)∂xσ = 0

∂tσ + v̂∂xσ − ρ̂ĉ2∂xv = 0

Linearized Euler equationsNewton’s law of motion

mbv̇b = σb + fb,

ẋb = vb

σb = σ0 + z
�
v0 − vb

�
• From the theory of characteristics we obtain the stress on the body
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For rigid bodies the principle is the same, but the details are more subtle
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Substituting (26) into (23) gives an equation for the motion of the body that only depends on the initial data in
the fluid and the external body force,

mbv̇b = σ0(rb + st)Ab + zAb

�
v0(rb + st)− vb

�
+ fb(t), (27)

ṙb = vb. (28)

This equation can be written in the form,

mbv̇b + zAbvb = σ0(rb + st)Ab + zAbv0(rb + st) + fb(t), (29)

ṙb = vb, (30)

where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero.

In practical implementation, it is often beneficial to localize (26) in space and time. Using χ(t) = χ(t− �) along
the C− characteristic and letting � → 0 leads to the relation

σ(rb, t) = σ(rb+, t−) + z
�
v(rb+, t−)− vb(t)

�
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal distance
backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection strategy
and can be generalized to a multidimensional problem as is done in Section 6. Furthermore, notice the similarity of
(31) to equation (20). This hints at the close connection between (31) and the projection schemes evaluated in [1, 2, 3]
for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of the one-dimensional FSI model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig. 2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by

∂
∂t

�
vL
σL

�
−

�
0 1

ρL
ρLc

2
L 0

�
∂
∂x

�
vL
σL

�
= 0, for x < −wb

2
, (32)

while those for the fluid in the right domain are

∂
∂t

�
vR
σR

�
−

�
0 1

ρR
ρRc

2
R 0

�
∂
∂x

�
vR
σR

�
= 0, for x >

wb

2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2
− σL|x=−wb/2

. (35)
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For rigid bodies the principle is the same, but the details are more subtle
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Substituting (26) into (23) gives an equation for the motion of the body that only depends on the initial data in
the fluid and the external body force,

mbv̇b = σ0(rb + st)Ab + zAb

�
v0(rb + st)− vb

�
+ fb(t), (27)

ṙb = vb. (28)

This equation can be written in the form,

mbv̇b + zAbvb = σ0(rb + st)Ab + zAbv0(rb + st) + fb(t), (29)

ṙb = vb, (30)

where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero.

In practical implementation, it is often beneficial to localize (26) in space and time. Using χ(t) = χ(t− �) along
the C− characteristic and letting � → 0 leads to the relation

σ(rb, t) = σ(rb+, t−) + z
�
v(rb+, t−)− vb(t)

�
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal distance
backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection strategy
and can be generalized to a multidimensional problem as is done in Section 6. Furthermore, notice the similarity of
(31) to equation (20). This hints at the close connection between (31) and the projection schemes evaluated in [1, 2, 3]
for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of the one-dimensional FSI model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig. 2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by

∂
∂t

�
vL
σL

�
−

�
0 1

ρL
ρLc

2
L 0

�
∂
∂x

�
vL
σL

�
= 0, for x < −wb

2
, (32)

while those for the fluid in the right domain are

∂
∂t

�
vR
σR

�
−

�
0 1

ρR
ρRc

2
R 0

�
∂
∂x

�
vR
σR

�
= 0, for x >

wb

2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2
− σL|x=−wb/2

. (35)
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This stress projection is extremely important so I repeat it
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Figure 1: The x-t diagram for the one-dimensional fluid/rigid-body problem.

Substituting (26) into (23) gives an equation for the motion of the body that only depends on the initial data in
the fluid and the external body force,

mbv̇b = σ0(rb + st)Ab + zAb

�
v0(rb + st)− vb

�
+ fb(t), (27)

ṙb = vb. (28)

This equation can be written in the form,

mbv̇b + zAbvb = σ0(rb + st)Ab + zAbv0(rb + st) + fb(t), (29)

ṙb = vb, (30)

where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero.

In practical implementation, it is often beneficial to localize (26) in space and time. Using χ(t) = χ(t− �) along
the C− characteristic and letting � → 0 leads to the relation

σ(rb, t) = σ(rb+, t−) + z
�
v(rb+, t−)− vb(t)

�
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal distance
backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection strategy
and can be generalized to a multidimensional problem as is done in Section 6. Furthermore, notice the similarity of
(31) to equation (20). This hints at the close connection between (31) and the projection schemes evaluated in [1, 2, 3]
for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of the one-dimensional FSI model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig. 2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by

∂
∂t

�
vL
σL

�
−

�
0 1

ρL
ρLc

2
L 0

�
∂
∂x

�
vL
σL

�
= 0, for x < −wb

2
, (32)

while those for the fluid in the right domain are

∂
∂t

�
vR
σR

�
−

�
0 1

ρR
ρRc

2
R 0

�
∂
∂x

�
vR
σR

�
= 0, for x >

wb

2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2
− σL|x=−wb/2

. (35)

6

σb = σ0 + z
�
v0 − vb

�

• This says that the stress at the body depends on the velocity of the body

• Therefore the equations of motion are well-defined even for zero mass

• The added mass term occurs naturally and represents the mass of displaced fluid

mbv̇b + zvb = σ0 + zv0 + fb(t)
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where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero.

In practical implementation, it is often beneficial to localize (26) in space and time. Using χ(t) = χ(t− �) along
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�
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal distance
backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection strategy
and can be generalized to a multidimensional problem as is done in Section 6. Furthermore, notice the similarity of
(31) to equation (20). This hints at the close connection between (31) and the projection schemes evaluated in [1, 2, 3]
for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of the one-dimensional FSI model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig. 2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by

∂
∂t

�
vL
σL

�
−

�
0 1

ρL
ρLc

2
L 0

�
∂
∂x

�
vL
σL

�
= 0, for x < −wb

2
, (32)

while those for the fluid in the right domain are

∂
∂t

�
vR
σR

�
−

�
0 1

ρR
ρRc

2
R 0

�
∂
∂x

�
vR
σR

�
= 0, for x >

wb

2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2
− σL|x=−wb/2

. (35)

6

σb = σ0 + z
�
v0 − vb

�

• This says that the stress at the body depends on the velocity of the body

• Therefore the equations of motion are well-defined even for zero mass

• The added mass term occurs naturally and represents the mass of displaced fluid

mbv̇b + zvb = σ0 + zv0 + fb(t)
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Substituting (26) into (23) gives an equation for the motion of the body that only depends on the initial data in
the fluid and the external body force,

mbv̇b = σ0(rb + st)Ab + zAb

�
v0(rb + st)− vb

�
+ fb(t), (27)

ṙb = vb. (28)

This equation can be written in the form,

mbv̇b + zAbvb = σ0(rb + st)Ab + zAbv0(rb + st) + fb(t), (29)

ṙb = vb, (30)

where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero.

In practical implementation, it is often beneficial to localize (26) in space and time. Using χ(t) = χ(t− �) along
the C− characteristic and letting � → 0 leads to the relation

σ(rb, t) = σ(rb+, t−) + z
�
v(rb+, t−)− vb(t)

�
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal distance
backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection strategy
and can be generalized to a multidimensional problem as is done in Section 6. Furthermore, notice the similarity of
(31) to equation (20). This hints at the close connection between (31) and the projection schemes evaluated in [1, 2, 3]
for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of the one-dimensional FSI model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig. 2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by

∂
∂t

�
vL
σL

�
−

�
0 1

ρL
ρLc

2
L 0

�
∂
∂x

�
vL
σL

�
= 0, for x < −wb

2
, (32)

while those for the fluid in the right domain are

∂
∂t

�
vR
σR

�
−

�
0 1

ρR
ρRc

2
R 0

�
∂
∂x

�
vR
σR

�
= 0, for x >

wb

2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2
− σL|x=−wb/2

. (35)

6

σb = σ0 + z
�
v0 − vb

�

• This says that the stress at the body depends on the velocity of the body

• Therefore the equations of motion are well-defined even for zero mass

• The added mass term occurs naturally and shows the effect of displaced fluid

mbv̇b + zvb = σ0 + zv0 + fb(t)

This stress projection is extremely important so I repeat it
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• In 2D the equations of motion are 

• Local projection of the stress on the surface of the body 

• Gives the applied forces and torques as

• We have adopted the notation

Ξ =




0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0



W =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





Incorporating the projection in the 2D equations of motion is straight forward

mbv̇b = F ,

Aω̇ = −WAω + T

fs(r) = −prn = −pfn+ zf
�
nT

�
vf (r)− vb + Ξω

��
n

F =

�

∂B
zfnn

T (−vb + Ξω) ds+

�

∂B
−pfn+ zf (n

Tvf )n ds+ fb,

T =

�

∂B
zfΞnn

T (−vb + Ξω) ds+

�

∂B
ξ ×

�
− pfn+ zf (n

Tvf )n
�
ds+ gb
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The resulting algorithm is very powerful and is provably stable for even the case 
of a zero mass rigid body

The FSI time stepping algorithm

Stage Condition Type Assigns

Predict(a) Predict body motion, moving grid extrapolation xp
b ,v

p
b ,ω

p,Ep,Gp
i

Predict(b) Advance fluid wn
i , wp

i , PDE wn
i , i ∈ II , wp

i , i ∈ IB

Body(a) Compute added mass terms Ap
11, A

p
12, A

p
21, A

p
22,

�Fp
, �T p

Body(b) Advance rigid body ODEs xn
b ,v

n
b ,ωn,En

Correct(a) Project fluid on body projection vn
i , pn

i , ρ
n
i , i ∈ IB

Correct(b) Correct moving grid projection Gn
i

Ghost Assign fluid ghost values PDE, extrapolation wn
i , i ∈ IG

• The time stepping algorithm for generic overlapping grids is

• Proofs of stability and detailed convergence analysis can be found at 

 JWB, WDH, B. Sjögreen, A stable FSI algorithm for light rigid bodies in compressible flow, LLNL-
JRNL-558232, submitted
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The resulting algorithm is very powerful and is provably stable for even the case 
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The resulting algorithm is very powerful and is provably stable for even the case 
of a zero mass rigid body
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• The deforming composite grid approach was developed for coupling high-speed 
compressible fluids to elastic and rigid solids

• Stability was achieved for light and heavy solids using an interface projection technique 
which is motivated by the solution of simple local problems

• Analytic forms for the added mass tensors were derived 

• Second-order convergence in the max-norm is verified for smooth flows 

Summary

• Move to more general solid models (nonlinear solids, beams, plates, etc ...)

• Extend analysis and methodology to incompressible fluids 
 

• Move to three dimensions

Future Work
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