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In this work our target applications are high-speed compressible flows with
embedded deforming or rigid solids

Example: Mach-2 shock impacting rigid sticks Example: Mach-2 shock impacting
deformable sticks
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We are developing a new interface projection methodology to eliminate added
mass instabilities in partitioned schemes

 Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006)
1. advance fluid (using interface velocity/position from the solid)

2. advance solid (apply fluid forces to the solid)

* This approach suffers instability for light solids (added mass instability)
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1. advance fluid (using interface velocity/position from the solid)

2. advance solid (apply fluid forces to the solid)

* This approach suffers instability for light solids (added mass instability)
e OQur new interface projection approach

1. project solution at the interface

2. advance fluid and solid

* Added mass instabilities can be avoided

e Stability is proved via. normal mode theory

e The analysis reveals very useful mathematical structure in FSI problems
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We are developing a new interface projection methodology to eliminate added
mass instabilities in partitioned schemes

 Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006)
1. advance fluid (using interface velocity/position from the solid)

2. advance solid (apply fluid forces to the solid)
* This approach suffers instability for light solids (added mass instability)
e OQur new interface projection approach
1. project solution at the interface
2. advance fluid and solid
* Added mass instabilities can be avoided
e Stability is proved via. normal mode theory
e The analysis reveals very useful mathematical structure in FSI problems

* Added mass instabilities are discussed elsewhere in the literature, for example
e Causin, Grebeau, and Nobile, 2005

e Gretarsson, Kwatra, and Fedkiw 2011
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Added mass instabilities can arise if the effect of displaced fluid is not
appropriately accounted for

in @ vacuum

force

Body simply moves according to
Newton’s laws of motion
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Added mass instabilities can arise if the effect of displaced fluid is not

appropriately accounted for

in @ vacuum

force

Body simply moves according to
Newton’s laws of motion

in a fluid

fluid contributing
to added mass

\

force

Body must displace and entrain fluid to move
and therefore appears more massive than in
vacuum ... the so called “added mass”
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Deforming Composite Grids (DCGs) are an efficient way to discretize PDEs in
deforming and/or moving geometry

* Overlapping grids are the foundation of DCGs
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deforming interfaces

e Benefits of this approach include:
- Local and rapid grid generation (hyperbolic grid generator)
- High quality grids even under large displacements and rotations
- High efficiency through the use of structured and Cartesian grids
- Grid construction that supports high-order discretizations

* \We use the Overture and CG software packages
- www.lInl.gov/CASC/Overture
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We pursue a partitioned approach for maximal efficiency and flexibility

* Fluid solver: we solve the inviscid Euler equations with a second-order extension

of Godunov’'s method (cgcns)
- WDH, D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using Overlapping Grids
with Adaptive Mesh Refinement, J. Comput. Phys. 227 (2008)
- WDH, D. W. Schwendeman, An Adaptive Numerical Scheme for High-Speed Reactive Flow on
Overlapping Grids, J. Comput. Phys. 191 (2003)

e Solid solver: we solve the elastic wave equations as a first-order system with a

second-order upwind scheme (cgsm)
- D. Appelo, JWB, WDH, D. W. Schwendeman, Numerical Methods for Solid Mechanics on Overlapping
Grids: Linear Elasticity, J. Comput. Phys. 231 (2012)

e Multidomain coupler: we use an interface projection scheme which is stable

across the entire range of material parameters, including for light solids (cgmp)
- JWB, WDH, B. Sjogreen, A stable FSI algorithm for light rigid bodies in compressible flows, LLNL-
JRNL-558232, submitted
- B. Sjogreen, JWB, Stability of Finite Difference Discretizations of Multi-Physics Interface Conditions,
Commun. Comput. Phys., 13 (2013)
- JWB, WDH, D. W. Schwendeman, Deforming Composite Grids for Solving Fluid Structure Problems, J.
Comput. Phys. 231 (2012)
- JWB, B. Sjogreen, A normal mode stability analysis of numerical interface conditions for fluid-structure
interaction, Commun. Comput. Phys., 10 (2011)
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Greengard’s Axiom:“lt never hurts to start my writing down the exact
solution to the problem”

solid fluid
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Greengard’s Axiom:“lt never hurts to start my writing down the exact
solution to the problem”

solid fluid
Linear Elasticity Euler Equations
O — =0 Op+ O0x(pv) =0
00,0 — 036 = 0 Oy (pv) + Ox(pv? 4+ p) =0
04 — pctzv = 0 Or(pE) + 0z (pEv + pv) = 0

Interface Coupling Conditions

(

(z,t) = v(x,t),
(jvt) — 0($,t) = —p(il?,t) T De

~{

QI

\
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Greengard’s Axiom:“lt never hurts to start my writing down the exact
solution to the problem”

solid fluid

* We call this the “elastic piston” problem
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By localizing the elastic piston problem we obtain a fluid structure Riemann

problem (FSRP) that can be used for FSI coupling

solid

fluid

= (v"+a*)t
x = 5t

x = (vg + ap)t

Po
Vo

Po

fluid

* This is a specific case of the elastic piston problem

- Constant states in fluid and solid

e Exact solutions to the linear and nonlinear problem are easily found
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The solution at the interface is defined in terms of solutions to the FSRP

» Along the interface, the solution is projected using solutions to local FSRPs
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The solution at the interface is defined in terms of solutions to the FSRP

e Along the interface, the solution is projected using solutions to local FSRPs

e The traditional FSI coupling is the large impedance (mass) limit z> z
- velocity from solid v = vg
- stress from fluid o071 =00 = —po + Pe

e The traditional scheme is unstable for light solids
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The solution at the interface is defined in terms of solutions to the FSRP

e Along the interface, the solution is projected using solutions to local FSRPs

e The traditional FSI coupling is the large impedance (mass) limit z> z
- velocity from solid v = vg
- stress from fluid o7 = 00 = —po + Pe

e The traditional scheme is unstable for light solids

 The new scheme is stable for any ratio of masses and impedances

e For proofs see JWB, B. Sjégreen, A normal mode stability analysis of numerical interface conditions for
fluid-structure interaction, Commun. Comput. Phys., 10 (2011)

* Here Z = pCpand 2 = PoGg are acoustic impedances
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The deforming diffuser solution can be used to investigate convergence in 2D

(xa, ya)

(Oa‘yb) supersonic inflow
2
O
k= S
= e,
S =
S| — fluid domain €2 3
:
3 T /8
interface o
(0, 7(0)) 4 g
— Y =F(x) ’
: (1L.F(1))
o _
& solid domain 2 -
Q)
! f
(0, ¥a) displacement BC 5

* A coupled semi-analytic smooth solution is determined:
- Fluid: Prandtl-Meyer analytic solution as a function of F(x)
- Solid: steady elasticity equations are solved on a very fine grid

- The coupled exact solution and F(x) are determined by iteration
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The deforming diffuser solution can be used to investigate convergence in 2D

(Td,ya)

.057 1.0

Ae mm;’lxl i &~ P
ERRREEE B ;
H a0 I
= (1, 7(1)) (ze.u.)
Solid Fluid
Grid | € | v [ X e | [ X | | e ] | X ] s
G | 1.604 2.8e-4 2.96-2 3.46-2 2.16-2 7.00-3
G\ | 33e5 | 48 | 1.1e-4 | 2.6 | 8.9e-3 | 3.3 | 8.6e-3 | 3.9 | 6.3¢-3 | 3.4 | 1.9¢-3 | 3.8
G | 5.6e6 |59 | 2.8¢-5| 3.9 | 1.8¢-3 | 5.0 | 2.2¢-3 | 3.8 | 2.1e-3 | 3.0 | 5.9e-4 | 3.2
GU'Y | 9.4e-7 | 5.9 | 6.8¢-6 | 4.1 | 3.5e-4 | 5.0 | 5.8¢-4 | 3.8 | 4.7e-4 | 4.4 | 1.3e-4 | 4.4
rate | 2.48 1.81 2.14 1.95 1.81 1.88

 Max norm convergence verifies second-order accuracy
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The superseismic shock problem is used to demonstrate convergence for
problems with discontinuities

Y, shock

interface

p-wave
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The superseismic shock problem is used to demonstrate convergence for
problems with discontinuities

Y, shock

interface

p-wave

t=0

...................
EEEESEEE R
interpolation

I
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Sy
/l interface
E(0)
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The superseismic shock problem is used to demonstrate convergence for

problems with discontinuities

Solid Fluid
Grid | & | v | Y | W e | e | | e e | &Y |y
D1 8.9¢-4 6.40-3 .8¢-2 5.9¢-3 3.80-2 1.2¢-2
&) 13242839316 1.1e2| 1629320/ 1.7e-2 |22 | 6.7-3 | 1.8
U6V 14e-d4 | 24 | 2463 | 1.7 | 6.7e-3 | 1.7 | 1.6e-3 | 1.9 | 8.6e-3 | 2.0 | 3.7e-3 | 1.8
82 1 6765 | 20| 1.4e-3 | 1.6 | 4.1e-3 | 1.6 | 82e-4 | 1.9 | 4.3e-3 | 2.0 | 1.9¢-3 | 1.9
rate | 1.24 0.72 0.72 0.94 1.03 0.88
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Self-convergence is measured for a difficult problem of a fluid cylinder impacted

by a solid compression wave

2.5
solid
—— p-wave shock x i
—2.5
—2.5 2.5
* L-1 norm convergence results demonstrate expected behavior
Solid Fluid
Grid | & | v | VY | W e | eM | | e | gD |y
G | 1.7e-4 1.1e-3 1.3¢-3 4.1e-3 2.3¢-3 4.2¢-3
Qc(li) 7.9e-5 | 2.1 | 69e4 | 1.6 | 79e-4 | 1.6 | 2.2e-3 | 1.8 | 1.3e-3 | 1.8 | 2.3e-3 | 1.8
Q(fl) 8.3e-6 | 9.5 | 1.be-4 | 4.5 | 1.8e-4 | 4.3 | 3.6e-4 | 6.3 | 2.1e-4 | 6.1 | 3.7e-4 | 6.2
rate 1.08 0.72 0.71 0.88 0.87 0.88
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Stability of partitioned solver for a variety of fluid/solid densities is demonstrated

(example of solid compression wave impacting fluid cavity)

.074 = 1.07

light solid
: 5=0.1
I Traditional coupling fails!

.49 7 1.258

medium solid
: 5=1.0
I Traditional coupling fails!

heavy solid
5=10.0
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The key lessons for the case of deforming bodies

* By embedding the solution to a local Riemann problem, we arrive at a stable partitioned
FSI algorithm for compressible flow and deforming structures

 Stability and accuracy can be proven and demonstrated

» Qverlapping grids are an efficient and powerful framework to implement the algorithm

* In some sense, the fact that the Riemann problem plays a key role is not surprising, and
one major advance in this work was to show how to embed the solution via projection

e For the case of rigid bodies, it is not immediately obvious how to make use of these
developments

<V T 2V | o0 — 00

Uy — — i —
zZ+ z z 4+ z
__1_ _1 o
< 00T < 0p Vo Vo
O = 72 T 1
z27++ 2z Z27+ 4+ z
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For rigid bodies the principle is the same, but the details are more subtle

At

xr = rp(t)
Up,Op
C~ 10+ zv =09+ 209
Vo, 00 {L‘
Jo —|  body fluid
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For rigid bodies the principle is the same, but the details are more subtle

At

xr = rp(t)
Up, Op
C™ 0+ zv =09+ 209
Vo, 00 xT
fo —|  body fluid
Newton’s law of motion Linearized Euler equations

Orp + 00z p + pOyv =0
Orv + 00, v — (1/p)0,0 =0
0,0 + 00,0 — pé*0,v =0

mpvpy = op + fo,

Ty = Vp
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For rigid bodies the principle is the same, but the details are more subtle

At

Up,Op \
o

0+ 2V =09 + 2V

Vo, 00 ﬁ\C
fo —|  body fluid
Newton’s law of motion Linearized Euler equations

Orp + 00z p + pOyv =0
Ov + 00, v — (1/p)0,0 =0
0,0 + 00,0 — pé*0,v =0

mpvpy = op + fo,

Ty = Vp

* From the theory of characteristics we obtain the stress on the body

Op = 0o + z(vo — vb)
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This stress projection is extremely important so | repeat it

At

xr = rp(t)
Up, Op
C™ 0+ zv =09+ 209
Vo, 00 xT
fo —|  body fluid

Op = 00 T+ z(vo — vb)

e This says that the stress at the body depends on the velocity of the body
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This stress projection is extremely important so | repeat it

At

Up,Op \
o

0+ 2V =09 + 2V

Vo, 00 xT

fo —|  body fAuid

Op = 00 T+ Z(UO — ”Ub)
e This says that the stress at the body depends on the velocity of the body

e Therefore the equations of motion are well-defined even for zero mass

mpUp + 20y = 09 + 209 + fp(t)
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This stress projection is extremely important so | repeat it

At

C™ 0+ zv =09+ 209

Vo, 00 xT

Jo —

body

fluid

Op — 0O —|—Z(”U() —”Ub)

e This says that the stress at the body depends on the velocity of the body

e Therefore the equations of motion are well-defined even for zero mass

my0p Hzop|= 00 + 200 + fo(t)

 The added mass term occurs naturally and shows the effect of displaced fluid
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Incorporating the projection in the 2D equations of motion is straight forward

* In 2D the equations of motion are

mbvb — Fa
Aw = -WAw + T
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Incorporating the projection in the 2D equations of motion is straight forward

* In 2D the equations of motion are

mbvb — Fa
Aw = -WAw + T

 Local projection of the stress on the surface of the body

f,(r)=—pn=—pm+zs [0’ (vi(r) — vy + Ew)| n
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Incorporating the projection in the 2D equations of motion is straight forward

* In 2D the equations of motion are

mbvb — Fa
Aw = -WAw + T

 Local projection of the stress on the surface of the body

f,(r)=—pn=—pm+zs [0’ (vi(r) — vy + Ew)| n

e Gives the applied forces and torques as
F = zenn® (—vy, + Zw) d3+/ —pn+zp(nlvy)n ds + f,
OB OB
T = z;Enn’ (—vy + Zw) ds + EX (—pm+zp(m've)n)ds+ g
OB

0B

* We have adopted the notation

0 —w3 woy 0 =& &
W = | ws 0 —w E=|& 0 &
& & 0
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The resulting algorithm is very powerful and is provably stable for even the case
of a zero mass rigid body

* The time stepping algorithm for generic overlapping grids is

The FSI time stepping algorithm
Stage Condition Type Assigns
Predict(a) | Predict body motion, moving grid extrapolation x,,vy,w?, EP GY
Predict(b) Advance fluid w{", w?, PDE wi',ie€Z;, w{,i€Ip
Body(a) Compute added mass terms AP AT, AR AL, F.o7"
Body(b) Advance rigid body ODEs Xy, vy, w", E"
Correct(a) Project fluid on body projection v, pi', pi, 1€1p
Correct(b) Correct moving grid projection G/
Ghost Assign fluid ghost values PDE, extrapolation w;, i€Ig

* Proofs of stability and detailed convergence analysis can be found at

JWB, WDH, B. Sjogreen, A stable FSI algorithm for light rigid bodies in compressible flow, LLNL-
JRNL-558232, submitted
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The resulting algorithm is very powerful and is provably stable for even the case
of a zero mass rigid body

Mach 2 shock impacting zero mass body with AMR

Time histories of rigid body
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X,
_|._X2
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Vo

W
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0.2 0.4 0.6 0.8 1
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The resulting algorithm is very powerful and is provably stable for even the case
of a zero mass rigid body

Mach 2 shock impacting zero mass body with AMR

Time histories of rigid body

2.5

S X,
P | X

A + 2
2’_e_V1

Vo

W
15[ "

0.51

0.2 0.4 0.6 0.8 1
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The resulting algorithm is very powerful and is provably stable for even the case
of a zero mass rigid body

JWB, WDH, B. Sjogreen, A stable FSI algorithm for light rigid bodies in compressible flow, LLNL-
JRNL-558232, submitted
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Summary

* The deforming composite grid approach was developed for coupling high-speed
compressible fluids to elastic and rigid solids

e Stability was achieved for light and heavy solids using an interface projection technique
which is motivated by the solution of simple local problems

e Analytic forms for the added mass tensors were derived

e Second-order convergence in the max-norm is verified for smooth flows

Future VWork

 Move to more general solid models (nonlinear solids, beams, plates, etc ...)
e Extend analysis and methodology to incompressible fluids

* Move to three dimensions
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