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CgIns: a high-fidelity modeling tool for computational wind engineering

This project expands and enhances our prior work

• Overture framework: high-order accurate
discretization and grid generation technology

• CgIns: a high-order accurate, high-efficiency
Boussinesq flow solver

• New: efficient approximate factorization schemes

• New: higher-order compact discretizations

• New: parallel high-order accurate multigrid

Our Goal:

To provide a publicly available,
high-order accurate, flexible
and efficient incompressible
LES tool
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CgIns solves the incompressible Navier-Stokes equations with a split-step
method on composite grids

ut + (u · ∇)u +∇p− ν∆u− f = 0,

∆p+∇u : ∇u− α∇ · u−∇ · f = 0.

(u(x, 0), T (x, 0)) = (uI(x), TI(x)), t = 0, x ∈ Ω,

B(u, T ) = 0, t > 0, x ∈ ∂Ω.

Naturally, we use structured overlapping grids:

• High efficiency due to regular data structure
→ Cartesian grids dominate the domain (optimized data &
algorithms)

• Overture provides extensive grid generation and management tools
→ Automatic, high-order, parallel, composite grid generator
→ The framework supports high-order accurate, composite grid
solvers

• Smooth grids are essential to high-order accurate algorithms
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Efficiency and accuracy are achieved by combining approximate
factorization methods with compact discretizations

• Approximate factorization (AF) schemes offer larger timesteps with second
order accuracy in time:
AF schemes discretizes

∂U

∂t
+AU +BU = 0

by starting with Crank-Nicolson:

(I +
∆t

2
(A+B))Un+1 = (I − ∆t

2
(A+B))Un

which is approximately factored to become

(I +
∆t

2
A)(I +

∆t

2
B)Un+1 = (I − ∆t

2
A)(I − ∆t

2
B)Un

• Deferred corrections may be incorporated to increase time accuracy

• Compact spatial schemes can be integrated into the AF solves
• Special “combined” compact schemes have been developed:
→ reduce the number of factors
→ preserve accuracy at boundaries
→ 4th and 6th order accuracy

All this must work on composite, dynamic grids on a range of HPC
systems while preserving stability and accuracy
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Factored schemes on curvilinear overlapping grids

Begin with the conservative form of the momentum equation:

∂ui

∂t
+

Nd∑
j=1

[
∂(ujui)

∂xj
− νi

∂2ui

∂x2
j

]
= fi

where fi contains the pressure gradient, buoyancy terms and any forcing.

One way to write this equation on a curvilinear grid is:

∂ui

∂t
+

Nd∑
k=1

Nd∑
j=1

{
∂

∂rk

[(
uj
∂rk
∂xj
− νi

∂2rk
∂x2

j

+ 4νi
∂rk
∂xj

∂2rk
∂xjrk

)
ui

]

− ∂2

∂r2
k

[
νi

(
∂rk
∂xj

)2

ui

]}
=

ui

Nd∑
k=1

Nd∑
j=1

[
∂

∂rk

(
∂rk
∂xj

uj + νi
∂2rk
∂x2

j

)
− ∂2

∂r2
k

(
∂2rk
∂xj

)2

νi

]

+ νi

Nd∑
k=1

Nd∑
j=1

∂rk
∂xj

Nd∑
l=1,l 6=k

∂rl
∂xj

∂2ui

∂rkrl
+ fi
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Factored schemes on curvilinear overlapping grids

If the INS equations are rewritten in a curvilinear coordinate system the
factors become apparent:

∂ui

∂t
+

Nd∑
k=1

[
∂

∂rk
(Aikui) +

∂2

∂r2
k

(Bikui)

]
= fc

i + fi

Aik =

Nd∑
j=1

(
uj
∂rk
∂xj
− νi

∂2rk
∂x2

j

+ 4νi
∂rk
∂xj

∂2rk
∂xjrk

)

Bik = −
Nd∑
j=1

νi

(
∂rk
∂xj

)2

• The LHS is approximated with a factored Crank-Nicolson (CN)
discretization
→ Still have to deal with the nonlinearity...

• The RHS is integrated explicitly using Adams-Bashforth (AB).
→ AB integration of fc

i + fi does not seem to cause a severe ∆t limit.

• This combination maintains CN stability for parabolic equations
(Beam-Warming, 1979)
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Integrating part of the problem explicitly can still yield an (almost)
unconditionally stable method

Beam and Warming showed how to integrate mixed-derivative parabolic
terms explicitly and still maintain CN’s A-Stability

Linear stability analysis on the semi- or fully discrete system
demonstrates that integrating the pressure explicitly is ok

• using approximately factored CN with Adams-Bashforth for the pressure
gradient results in a stability restriction:

α∆t ≤ 1

...but we are free to choose α (divergence damping)

• using Crank-Nicolson for the pressure gradient results in unconditional
stability
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Incorporating compact schemes requires adding line solves

Compact schemes approximate derivatives implicitly

Pr
∂U

∂r
= DrU +O (hp)

Prr
∂2U

∂r2
= DrrU +O (hp)

where the P and D are matrices and U is the discrete solution

Incorporation into an approximate factorization, for example:

∂u

∂t
+ a

∂u

∂x
− b∂

2u

∂x2
= 0.

An approximately factored CN discretization, with compact approximations,
would need four banded solves:

(I + P−1
r Dr(

∆t

2
a))(I − P−1

rr Drr(
∆t

2
b))Un+1 =

(I − P−1
r Dr(

∆t

2
a))(I + P−1

rr Drr(
∆t

2
b))Un.

INS would need 2NdNopsNeqs solves

LLNL-PRES-590252



Overview Numerical Methods otherStuff Verification Validation Performance and movies Status and future work

Combined schemes reduce the number of line solves

Generally, Pr 6= Prr which leads to many factors

By adding stencil width, we can set Pr = Prr = P and compute the
corresponding P , Dr, and Drr operators.

The combined operator for advection-diffusion yields 1 factor[
P +

∆t

2
(aDr − bDrr)

]
Un+1 =

[
P − ∆t

2
(aDr − bDrr)

]
Un

For INS, we have 2NdNeqs line solves.

The leading-order T.E. is lower but the stencil is wider

FD4 CC4 OC4 CC6
∂u
∂x

1
30
u5′ 1

180
u5′ 1

180
u5′ − 1

9450
u7′

∂2u
∂x2

1
90
u6′ 1

360
u6′ 1

240
u6′ 19

75600
u8′

Figure: Leading truncation error constants for stencil width-5 approximations. FD4 -
4th order finite difference; CC4 - combined 4th order compact; OC4 - “optimal” 4th

order compact; CC6 - combined 6th order compact.
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Details: interpolation points, linearization and iteration

Extrapolation in time is used to estimate un+1 for the interpolation and parallel
ghost point equations as well as the initial linearization state (i.e. An+1

ik ).

At interpolation and parallel ghost points:

un+1,0
I = un

I + (un
I − un−1

I )

un+1,m∗
I = un

I + (un+1,m−1
I − un

I ),m > 0

un+1,m
I = g(x),where g is either a b.c. or interpolation

At interior points, the LHS linearization state is:

un+1,0 = un + (un − un−1)

un+1,m = un+1,m−1,m > 0

where the LHS equations are solved, updating u, in each iteration. This
approach maintains 2nd order accuracy without requiring block-banded solvers.
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Even more details
Yes, there is an artificial viscosity...

Each directional factor gets a dissipative term:

{
−(a21 + a22|∇u|)∆+∆− + (a41 + a42|∇u|)(∆+∆−)2}un+1

i

where

∆+∆−ui = ui+1 − 2ui + ui−1

• the nonlinear a22 term is similar to a Smagorinsky Large Eddy Simulation
viscosity

• the a42 term performs the same function but preserves more high
frequency content than the lower order term

• typically a21 = a22 = 0 except near boundaries with insufficient resolution
to capture the boundary layers
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Timestep algorithm

Variables

∆t : timestep

Un : solution at step n
Nf : number of factors

An
f : operator for factor

f computed using Un

NI : number of Un+1

update iterations

forcing : explicitly

integrated forcing

Notes:

• NI can also be set via a
tolerance

• The solves are performed
independently on each grid

• The code is implemented
to minimize the number of
temporary arrays

BEGIN:
forcing = 0
Un+1 = 0
U∗ = Un

for ( f = Nf − 1; f ≥ 0; f ++ )

solve PfU
∗∗ = (Pf − ∆t

2
An

f )U
∗

U∗ ← U∗∗

addForcingForFactor(forcing,f)
endfor
R← U∗+ forcing
Un+1,0 ← 2Un − Un−1

for ( m = 1; m ≤ NI; m++ )
for ( f = 0; f < Nf; f ++)

solve(Pf + ∆t
2
An+1,m−1

f )U∗∗ = U∗

U∗ ← U∗∗

endfor
Un+1,m ← U∗

U∗ ← R
interpolateAndApplyBC(Un+1,m)
updateInterpolationPointForcing(Un+1,m,U∗)

endfor
Un+1 ← Un+1,NI

solvePressureEquation(Un+1)

END
LLNL-PRES-590252
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Multigrid provides fast pressure solves on dynamic overlapping grids

Matrix-free multigrid exploits the grid & solver

• relatively inexpensive setup and memory efficient

• efficient for high-order accurate methods

• mesh-independent convergence rates
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Code Verification is an integral part of our development

Verification demonstrates correct implementation of numerical
approximations and that the method possesses the required accuracy and

stability

Verification is difficult for complex algorithms

• High-order accurate algorithms are sensitive to small
errors and grid irregularities

• Weak instabilities may only be apparent after long
computations and are hard and expensive to diagnose

Twilight-zone (manufactured) solutions provide rigorous verification

• Exact multidimensional solutions are posed and used to force the PDE

• Errors are measured and convergence rates are estimated

• Can catch “low order” errors that are consistent but reduce accuracy

hmax |ep|∞ |eu|∞ |ev|∞ |ew|∞ |∇ · u|∞
1.34e-01 2.74e-02 1.13e-01 8.63e-02 7.96e-02 1.63e+00

6.68e-02 5.74e-03 (4.8) 5.81e-03 (19.4) 4.25e-03 (20.3) 4.06e-03 (19.6) 9.86e-02 (16.5)

3.34e-02 5.19e-04 (11.1) 3.16e-04 (18.4) 2.25e-04 (18.9) 2.10e-04 (19.3) 8.69e-03 (11.3)

1.67e-02 3.40e-05 (15.3) 1.87e-05 (16.9) 1.38e-05 (16.3) 1.28e-05 (16.4) 9.03e-04 (9.6)

rate 3.2 4.2 4.2 4.2 3.6
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Both steady state and time dependent manufactured solutions are used to
test spatial and temporal approximations

Verification of fourth-order spatial and second-order temporal accuracy

hmax |ep|∞ |eu|∞ |ev|∞ |∇ · u|∞
6.13e-02 1.17e-02 4.35e-03 4.93e-03 9.36e-02

3.08e-02 7.16e-04 (16.3) 1.68e-04 (25.9) 1.72e-04 (28.7) 5.99e-03 (15.6)

1.54e-02 4.31e-05 (16.6) 1.14e-05 (14.7) 9.52e-06 (18.1) 4.45e-04 (13.5)

7.70e-03 2.91e-06 (14.8) 7.62e-07 (15.0) 6.67e-07 (14.3) 3.43e-05 (13.0)

rate 4.0 4.1 4.3 3.8

Table: Time dependent exact solution

hmax |ep|∞ |eu|∞ |ev|∞ |∇ · u|∞
6.13e-02 1.97e-05 1.20e-05 1.04e-05 3.27e-04

3.08e-02 1.32e-06 (14.9) 8.97e-07 (13.4) 8.11e-07 (12.8) 2.06e-05 (15.9)

1.54e-02 7.58e-08 (17.4) 5.66e-08 (15.8) 4.85e-08 (16.7) 1.28e-06 (16.1)

7.70e-03 4.75e-09 (16.0) 3.09e-09 (18.3) 2.90e-09 (16.7) 8.23e-08 (15.6)

rate 4.0 4.0 4.0 4.0

Table: Steady state exact solution
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Manufactured solutions test the algorithm with full dimensionality,
nonlinearity and grid complexities

Full 3D test of the INS algorithm on an
overlapping grid

• 4th order spatial, 2nd order temporal

• Tests overlapping grid algorithm and long
time integration

• Demonstrates optimized Cartesian and
curvilinear grid code

hmax |ep|∞ |eu|∞ |ev|∞ |ew|∞ |∇ · u|∞
2.94e+00 5.10e-02 6.71e-02 3.56e-02 3.44e-02 1.52e-01
1.47e+00 3.62e-03 4.40e-03 2.19e-03 2.21e-03 2.28e-02
7.36e-01 2.62e-04 3.16e-04 1.44e-04 2.34e-04 1.34e-03

rate 3.8 3.9 4.0 3.6 3.4
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Moving grids are particularly challenging to develop and verify
Subtle bugs are often buried in complex code

hmax |ep|∞ |eu|∞ |ev |∞ |∇ · u|∞
6.13e-02 1.56e-02 2.84e-02 2.17e-02 2.03e-01
3.08e-02 2.56e-03 (6.1) 1.53e-03 (18.6) 1.25e-03 (17.4) 1.52e-02 (13.4)
1.54e-02 2.08e-04 (12.3) 7.63e-05 (20.1) 6.21e-05 (20.1) 1.38e-03 (11.0)
7.70e-03 1.37e-05 (15.2) 3.91e-06 (19.5) 2.85e-06 (21.8) 1.18e-04 (11.7)
rate 3.4 4.3 4.3 3.6
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A verified code can be validated

Validation tests the mathematical model’s ability to represent the
physical problems of interest

Validation is accomplished via comparison to experimental data

• Good experimental data are necessary

• Errors in the approximation of the mathematical model must be
understood (e.g. verification)

• Like verification, validation is a continuous process

(a) flow past a cylinder (b) flow past a steep hill (c) moving cylinder
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Computing the Strouhal number for 3D flow past a right circular cylinder
Schlichting, 1960

This case uses many parts of the
model

• the 3D compact AFS scheme

• parallel algorithms

• fourth-order spatial accuracy

• more code optimization still
required

Re = 1000 Performance and Results

• 400k grid points, 6 2.2Gz Xeon
cores

• under 3hrs of wallclock time

• 1Gb of RAM (600Mb for 1 cpu)

• St = .215 matches Schlichting

(a) velocity contours
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Flow over Ishihara, Hibi and Oikawa’s wind tunnel hill demonstrates the
need for code optimization and more modeling

Ishihara, Hibi, Oikawa, 1999

This case is challenging

• Re = 12000, inflow given by log-law
(coefficients from experiment)

• 4 million grid points

• 128 cpus, 56hrs of wallclock time

• Memory and cpu performance are worse
than expected

• The poor agreement with data is probably
due to the lack of a wall model

!3 !2 !1 0 1 2 3 4 5 6 7
0
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1

1.5

2

2.5

3

x/h

y
/h

(a) instantaneous u/U0 (curves) and experimental values
(circles)

(b) grid near the hill

(c) x-velocity contours
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Impulsively started rotating and translating cylinder
Coutanceau and Menard, 1985

This problem is easy to resolve

• Re = 200, cylinder impulsively started into translation and rotation

• 368k grid points, 177Mb RAM, less than one hour on 2.2Gz cpu

This problem is tested in two ways

• rotate the cylinder and impose translation via boundary and inflow
conditions (dashed lines)

• rotate and translate the cylinder (solid lines)

• the results are sensitive to how “impulsively” the cylinder is started!

(a) streamlines at t∗=4
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(b) x-velocity comparison
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(c) y-velocity comparison
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The factored scheme performs well compared to the original
predictor-corrector and implicit algorithms
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Flow past a rotating ring
movie by Bill Henshaw

• 14× 106 grid points

• Re ≈ 2000

• about 36hrs on 64
processors

loading movie...
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rotatingFlattenedTorus8.mpg
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Turbine mock-up
movie by Bill Henshaw

loading movie...
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Our new method has been verified and (partially) validated, but more
modeling work is required

Much of the core functionality is implemented and tested

• High-order compact/AF scheme implemented and verified

• Parallel moving grid generation and 4th order accurate multigrid
implemented

• Parallel and moving grid AF scheme is verified

But there is still more work to do...

• Memory and cpu performance could be futher optimized

• Wall models have been implemented and are currently being tested

Future applications

• Wind park modeling with terrain

• Building flow modeling and control system design

• Urban scale flows

CgIns is available at: http://www.llnl.gov/casc/Overture
LLNL-PRES-590252
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