

Alfred Gessow Rotorcraft Center Aerospace Engineering Department University of Maryland, College Park

High-Order Non-Oscillatory Compact Reconstruction Scheme for Overset Grids

Debojyoti Ghosh

Graduate Research Assistant Shivaji Medida Graduate Research Assistant James D. Baeder

Associate Professor

11th Symposium on Overset Composite Grids and Solution Technology 15 – 18 October, 2012, Dayton, OH

Motivation

Accurate numerical simulation of the wake flow field around a rotorcraft

- Long term convection and mutual interaction of vortices
- Interactions of vortices with fuselage and ground plane
- Accurate resolution of near-blade turbulent structures

High order accurate Navier-Stokes solver

- High spectral resolution for accurate capturing of smaller length scales
- Non-oscillatory solution across shock waves and shear layers
- Low dissipation errors for preservation of flow structures over large distances

Compact-Reconstruction WENO Schemes

The Compact-Reconstruction WENO (CRWENO) * scheme

- Convex combination of *r*-th order candidate *compact* interpolations
- Optimal weights in smooth regions \rightarrow (2*r*-1)-th order *compact* interpolation
- Smoothness dependent weights \rightarrow Non-oscillatory interpolation for discontinuities

Why Compact Reconstruction?

- High order accuracy with smaller stencils
- Better spectral resolution than explicit interpolation (bandwidth resolving efficiency)
- Lower dissipation at resolved frequencies
- Taylor series error order of magnitude lower

Dispersion and dissipation relationships

★ Ghosh & Baeder, Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws, SIAM J. Sci. Comp., 34(3), 2012

Baseline Solver

Integration of the CRWENO scheme with a compressible Navier Stokes solver for overset structured meshes

- Time Marching: 2nd order Backward Differencing (BDF2) and 3rd order Total Variation Diminishing Runge Kutta (TVDRK3)
- **Dual time-stepping for time-accurate computations**
- Implicit Inversion: Diagonalized ADI and LU-SGS
- Spatial reconstruction:
 - 5th order CRWENO scheme (compact)
 - 3rd order MUSCL and 5th order WENO schemes (non-compact)
- Upwinding: Roe's flux differencing
- Turbulence Modeling: Spallart-Almaras one-equation model
- Implicit hole-cutting for overset meshes
- Viscous Terms discretized by 2nd order central differences

Applications

UNIVERSITY OF MARYLAN

Navier-Stokes Equations

- Non-oscillatory solutions across discontinuities
- Absolute errors order of magnitude lower than WENO5 scheme
- Sharper resolution of extrema & shocks/ contact discontinuities
- Significantly lower dissipation for smaller length scales
- Improved preservation of flow structures
 over large convection distances
- Validated for curvilinear meshes

Overset Grids

Solution algorithm on overset meshes

- Identification of field, overlap and hole regions
- Field points → Governing equations are solved
- Overlap region → Solution exchanged with other meshes
- Hole region → Blanked out, contains nonphysical values
- Implicit Hole-Cutting (Lee & Baeder, 2008)
- Tri-linear interpolation of solution between donor and receiver points

Application of compact schemes

- Coupled solution for the interface fluxes
- Solution in hole region coupled with solution at field points
- System of equations contain nonphysical values from the hole region

Verification / Validation

Isentropic vortex convection

MA

- Steady flow over SC2110 airfoil in wind tunnel, with and without leading edge slat
- Dynamic stall of a pitching SC1095 airfoil in wind tunnel
- Application
 - Flow around the Harrington two-bladed rotor

Comparison of pressure error at vortex core

0.9980

0.9975

0.9970

0.9965

0.9955

0.9950

0.9942

WENO5

х

6

Isentropic Vortex Convection on Overset Grids

Comparison of solutions on single and overset meshes for the CRWENO5 scheme (*20 core radii*) → Good agreement

151x101 points

SC1095 Dynamic Stall

Mean angle of angle: 9.78°, Pitch Amplitude: 9.9°, Reduced Frequency: 0.099, Tunnel height: 5c

Numerical Solution: Time stepping: BDF2 w/ 15 sub-iterations

Harrington 2-Bladed Rotor

Conclusions and Future Work

CRWENO5 scheme validated and verified for overset grids

- Improved resolution of flow features due to lower numerical errors
- Slight loss of accuracy due to 2nd order interpolation between meshes
- Non-physical solution in "hole" does not pollute field solution
- Smooth transfer of solution between different grids

Future Work & Applications of CRWEN05

- Application to meshes w/ immersed boundaries
- Wake flow from coaxial configurations
- Rotorcraft wake flow when operating "inground-effect" (IGE)
- Accurate modeling of wake vortex interactions with ground plane
- Application of CRWENO5 scheme with Vortex-Tracking Grids (VTGs)
- Sound generation due to blade vortex interaction (BVI) for rotor in forward flight

8 8

Alfred Gessow Rotorcraft Center Aerospace Engineering Department University of Maryland, College Park

р

А

0

MAR

Thank You! Questions?