

CE RESEARCH LABOR

Chimera Overset Method with a **Discontinuous Galerkin Discretization**

Cincinnati

Marshall Galbraith

University of Cincinnati School of Aerospace Systems galbramc@email.uc.edu

Paul D. Orkwis

University of Cincinnati School of Advanced Structures Paul.Orkwis@uc.edu

John Benek

GTSL Air Force Research Laboratory UNIVERSITY OF Computational Science Branch Center of Excellence John.Benek@wpafb.af.mil

Motivation

- Chimera Overset Grid Method
 - Complex Geometries
 - "Hot swap" Geometric Features
 - Moving Grids with Relative Motion
 - Store Separation
 - Rotorcraft
- High-Order Methods
 - DNS-LES
 - Transitional Turbulent Flows
 - And more...

- WENO, Compact FD
 - Large Interior Stencils
 - Fringe Points
 - Maintain Interior Scheme
 - Orphan Points
 - High-Order Interpolation
 Schemes
 - Large Stencil
 - Complicated Hole Cutting
- Discontinuous Galerkin Method
 - Natural Higher Order
 Extension to Finite Volume
 - Compact Stencil
 - Communication
 - No Fringe Points
 - Hole Cutting
 - Curved Elements

Conclusion and Future Work

11th Overset Grid Symposium, 16 Oct 2012

-1.38 -1.36

Discontinuous Galerkin Method

- Euler/Navier-Stokes Equations in Conservation Form $\nabla \cdot \vec{F} = 0$
- Weak Form $\int_{\Omega_{e}} \phi \nabla \cdot \vec{F} d\Omega = 0 \qquad \begin{array}{l} \phi \cdot \text{Legendre} \\ \text{Polynomials} \end{array}$ $R(Q^{+}, Q^{-}) = \int_{\Gamma_{e}} \phi \vec{F}(Q^{+}, Q^{-}) \cdot \vec{n} d\Gamma \int_{\Omega_{e}} \nabla \phi \cdot \vec{F}(Q^{-}) d\Omega = 0$
- Approximate Riemann Solver by Roe
- BR2 Viscous Scheme
- Newton-Krylov Solver with GMRES and ILU1 Preconditioner

7

Discontinuous Galerkin Method Geometric Mapping

N_g – Degree of Cell Polynomial

$$x(\xi,\eta) = \sum_{i=0}^{N_g} \sum_{j=0}^{N_g} x_{ij} \phi_i(\xi) \phi_j(\eta)$$

$$y(\xi,\eta) = \sum_{i=0}^{N_g} \sum_{j=0}^{N_g} y_{ij} \phi_i(\xi) \phi_j(\eta)$$

$$\begin{split} \xi_x &= Jy_\eta \qquad \xi_y = -Jx_\eta \\ \eta_x &= -Jy_\xi \qquad \eta_y = Jx_\xi \\ \vec{n}_\xi &= \frac{\nabla\xi}{J} = \frac{1}{J} \begin{pmatrix} \xi_t & \xi_x & \xi_y \end{pmatrix} \\ \vec{n}_\eta &= \frac{\nabla\eta}{J} = \frac{1}{J} \begin{pmatrix} \eta_t & \eta_x & \eta_y \end{pmatrix} \end{split}$$

Discontinuous Galerkin Method Geometric Mapping

11th Overset Grid Symposium, 16 Oct 2012

N_g – Degree of Cell Polynomial

$$x(\xi,\eta) = \sum_{i=0}^{N_g} \sum_{j=0}^{N_g} x_{ij} \phi_i(\xi) \phi_j(\eta)$$

$$y(\xi,\eta) = \sum_{i=0}^{N_g} \sum_{j=0}^{N_g} y_{ij} \phi_i(\xi) \phi_j(\eta)$$

High-Order FD/FV Chimera Fringe Points

• Fringe Points:

 Additional Points on the Boundary to Maintain Interior Scheme

High-Order FD/FV Chimera Fringe Points

• Fringe Points:

 Additional Points on the Boundary to Maintain Interior Scheme

High-Order FD/FV Chimera Fringe Points

DG-Chimera Inter-Grid Communication

Need
$$Q^+(\eta) = \sum_n^N q_n^+ \phi_n(\eta)$$

14

 $R(Q^{+},Q^{-}) = \int_{\Gamma_{e}} \phi \vec{F}(Q^{+},Q^{-}) \cdot \vec{n} d\Gamma$ $-\int_{\Omega_{e}} \nabla \phi \cdot \vec{F}(Q^{-}) d\Omega = 0$ $11^{th} Overset Grid A$

15

DG-Chimera Zonal Interfaces

- No Additional Cells to Facilitate Communication
 - No Fringe Points
 - No Orphan Points Associated with Fringe Points
- Reduces to Zonal Interface
 - Curved Boundary
 - Coincident Nodes
 - Linear Mappings
- Linear Boundary
- Linear Mappings

- Concave Linear Mapping
- Convex Quadratic Mapping

Identical to Interior Scheme

DG-Chimera Orphan Faces

~

• Honor of Dr. Benek, Dr. Steger, and Dr. Dougherty

• Subsonic Circular Cylinder ($M_{\infty} = 0.25$)

Subsonic Circular Cylinder (M_∞ = 0.25) GTSL Cp Contour Lines

SKF 1.1 Airfoil ($M_{\infty} = 0.4$) Meshes

SKF 1.1 Airfoil ($M_{\infty} = 0.4$) Cp Contour Lines

• Implicit Chimera Boundaries $A(Q_{Local}, Q_{Chimera})\Delta Q = R(Q_{Local}, Q_{Chimera})$

11th Overset Grid Symposium, 16 Oct 2012

-1.38 -1.36

Secant Line Geometric Representation
Interpolation from Incorrect Interior Cells

- PEGASUS5 & SUGGAR++: Projection [^]
- Discontinuous Galerkin Curved Elements
 - Elements Follow Surface of Geometry
 - (Dr. Noack Finite Volume)

26

Viscous Flow Examples

- Inspired from 3D Overset Mesh
- Nose Section

 M_∞=0.5, Re=1,000,000
- Circular Cylinder
 M_∞=0.1, Re=40

1.5

0.5

0

-0.5

-1

-1.5

-2

Nose Section Surface Velocity

Nose Section Common Boundary Layer

Circular Cylinder Re 40 Meshes

11th Overset Grid Symposium, 16 Oct 2012

31

Circular Cylinder Re 40 Surface Velocity

Circular Cylinder Re 40 Common Boundary Layer

Circular Cylinder Re 40 Separation Length

- DG-Chimera
 - No Orphan Points Due to Fringe Points
 - Naturally Reduces to Zonal Interface
 - Inherent Proper Interpolation on Curved Geometry
 - Curved Elements
 - Demonstrated on Inviscid/Viscous Flows
- Future Work
 - Extend to 3-D in Space (Mostly complete)
 - Shock Capturing (Mostly Complete)
 - Parallel Execution with MPI

Thank you! Questions?

