Initial Implementation of Near-Body Grid Adaption in OVERFLOW

Pieter G. Buning
NASA Langley Research Center, Hampton, VA

and

Thomas H. Pulliam
NASA Ames Research Center, Moffett Field, CA

11th Symposium on Overset Composite Grid and Solution Technology
October 15-18, 2012, Dayton, OH
Goal

• Extend off-body solution adaption approach to near-body grids
 – Make it an integral part of the OVERFLOW solution procedure
 – Efficient enough for time-accurate moving grids!

Outline

• (Goal)

• Approach
 – Sensor function and marking
 – Grid generation and connectivity
 – Grid and solution interpolation

• Examples

• Issues
 – Topology limitations
 – Parametric cubic interpolation

• Summary and future work
Approach

• Use the same approach as for off-body adaption, just in computational space instead of Cartesian space
 – Refinement is isotropic
 – Where we have refinement regions, blank out coarser-level regions
 – Neighboring refinement regions differ by only 2x in spacing
 – Use parametric cubic interpolation to form refined grids (more later)
Approach

Controls:

• NREFINE – maximum number of refinement levels
 • NBREFINE – number of near-body refinement levels, if different
• ETYPE – sensor function (undivided 2nd difference, vorticity, undivided vorticity...)
• EREFINE – sensor value above which we mark for refinement
• ECOARSEN – sensor value below which we mark for coarsening
• Specify near-body regions to explicitly refine
• Specify near-body regions to limit refinement
Sensor Function and Marking

- Undivided 2nd difference of (elements of) $Q=(\rho, \rho u, \rho v, \rho w, \rho e_0)$

- Actually computed as
 $\max_{i=j,k,l} \left\{ \frac{q_i - \frac{1}{2}(q_{i-1} + q_{i+1})}{q_{ref}} \right\}^2$

 (normalized and squared; take max over Q variables)

- This function
 - Is non-dimensional
 - Is independent of grid units
 - Gets smaller as the grid is refined (where Q is smooth)
Sensor Function and Marking

• At each grid point
 – If the sensor function value exceeds a refinement tolerance, mark for grid refinement;
 – If it falls below a coarsening tolerance, mark for grid coarsening

• Within an 8x8x8 grid cube, or “box”
 – If any point votes for refinement, the box is marked for refinement;
 – If all points vote for coarsening, the box is marked for coarsening

• Regions can only coarsen or refine by one level at a time
Grid Generation

- Parametric cubic interpolation vs. linear interpolation
 - Preserves smooth geometry
Grid Generation

- Parametric cubic interpolation vs. linear interpolation
 - Preserves grid stretching

Computational grid

Parametric cubic interpolation

Linear interpolation
Grid Connectivity

• Hole cutting
 – All refinement regions get cut by geometry (just like original near-body grid)

• Blanking for refinement
 – Next-finer grid level explicitly blanks out regions in current level

• Connectivity
 – Refinement regions can have
 • Hole boundary points from geometry cuts
 • Hole boundary points from finer refinement grids
 • Outer boundary points (connecting to same- or coarser-level regions)
 • Outer boundary points (connecting to other near-body or off-body grids)
 • Boundary conditions inherited from original near-body grid
Grid and Solution Interpolation

• Use parametric cubic interpolation of original near-body grid to form any level refinement region
 – For parallel execution, only have to send necessary part of original grid to processor creating refined region

• Near-body grid and solution interpolation:
 – All MPI groups exchange (pieces of) the original near-body grids to generate original or refinement grids, using non-blocking sends and blocking receives
 – All MPI groups loop through old near-body grids, coarse-to-fine, transferring and interpolating solution onto new grids
Example Applications

• NACA 0012 airfoil
• 2D supersonic inlet
• Leading/trailing wing interaction
• Vortex generator on a flat plate
NACA 0012 Airfoil

- Refinement shows additional flow features, resolves pressure details

Flow conditions: Mach 0.55, alpha 8.34 deg, Re=9M/chord
NACA 0012 Airfoil

- Similar answer is obtained using previous approach of off-body grid adaption with thin (fine) near-body grid.

Mach contours

4 levels of near-body grid adaption
Total grid size 450K points

Off-body adaption with thin near-body grid
Total grid size 550K points
NACA 0012 Airfoil

- Grid refinement gives resolution of bounce in Cp due to lambda shock

Mach contours with 4 levels of near-body grid adaption

Pressure Coefficient

- Experiment
- Original grid
- Off-body adaption
- Near-body adaption

10/18/2012
2D Supersonic Inlet

- Grid adapts to shocks, expansion fans, and boundary layer

Flow conditions: Mach 5.0, Re=0.9M, inviscid upper wall
2D Supersonic Inlet

- Visible details of shock/boundary layer interaction, allowing better evaluation of turbulence model response to physics
Leading/Trailing Wing Interaction

• Wake and tip vortex of leading wing impinges on trailing wing
• Experiment performed at Virginia Tech:

Flow conditions: Mach 0.1, Re=0.26M/chord, both wings at 5 deg angle-of-attack
Leading/Trailing Wing Interaction

- Entropy contours and downstream grid cut show difference in resolution of tip vortex interaction with trailing wing.
Vortex Generator on a Flat Plate

- Original grid system included plate grid, box grid, and vortex generator grids
- Throw away box grid and let adaptation resolve grid communication

Reference for original vortex generator analysis:
Vortex Generator on a Flat Plate

- Comparison of no adaption, adaption, and box adaption strategies

Contour surface of density, colored by pressure;
Downstream contours are u-velocity

No adaption, no box grid Adaption without box grid Adaption with box grid
Issues

- Limitations on original grid topology
- Parametric cubic interpolation for grid refinement
Grid Topology Limitations

• Adaption indexing in computational space doesn’t give overlap across O-grid periodic boundary
 – Workaround is to split O-grids into 2 grids with overlap

• Similar problem with C-grid wake cut
 – Sample utility splits C-grid into upper, lower, and wake grids
Parametric Cubic Interpolation

- Interpolation of grid will round sharp corners
- This is an issue for the volume grid, not just the surface grid
Summary and Future Work

Summary:
• A usable near-body grid adaption capability has been implemented and released in OVERFLOW
• Adaption is parallelized and fast enough for time-accurate moving-body problems

Future Work:
• Better handling of volume grids that are not smooth
• Implement O-grid (and C-grid?) adaption without the user splitting the grid
• Investigate the balance between near-body and off-body grids, with adaption
• Extend near-body adaption to work with grid systems assembled with Pegasus 5
• Implement some control on growth of grid system