Comparison of Experiments and OVERFLOW Modeling of Store Release from a Cavity at Mach 3

LCDR Thomas J. Flora*, USN
Mark F. Reeder (speaker)
Air Force Institute of Technology

Sponsor:
Mr. Rudy Johnson (AFRL/RBAI)
18 October 2012
*currently F-18E/F training systems IPT co-lead, NAVAIR

This material contained herein is approved for public release, Distribution unlimited. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.
Impetus

The AFIT of Today is the Air Force of Tomorrow.

- Defense Trends
 - Precision Guided/Low Yield
 - Reduced Signature
 - Supersonic
Store Certification Process

- Computational Fluid Dynamics (CFD)
 - Parametric flexibility
 - Computational resources
 - Verification/Validation
- Experimental Fluid Dynamics (EFD)
 - Freedrop:
 - Captive trajectory system: Steady state flowfield
 - Scale-up is challenging
- Flight testing
 - Provides the “true solution”
 - Unsteady flow
 - Untenable during R and D
Project Research Objectives

- Develop robust freedrop test capability at AFIT
- Utilize advanced CFD software (OVERFLOW) to model the wind tunnel experiments
 - Simple sphere model released from a cavity into Mach 3 flow
 - Multiple stagnation pressures
- Freedrop test realistic geometry (Mk-82)
- Characterize how a flow control device (spoiler) affects cavity flow and store separation at Mach 3
Cavity Flow

- Supersonic cavity flow\(^1\)
- Open cavity pressure resonance\(^2,3\)
 - Frequency prediction
- Cavities pose challenges for store release\(^4\)

\[
Str = \frac{fL}{U_\infty} = \frac{n - \beta}{M_\infty} + \frac{1}{k_c} \sqrt{1 + \frac{1}{2} (\gamma - 1) M_\infty^2}, n = 1, 2, 3, \ldots
\]

\(^1\)Stallings and Wilcox (1987)
\(^2\)Rossiter (1964)
\(^3\)Heller, Holmes, and Colvert (1970)
\(^4\)e.g. Bjorge et al. (2003)
Store Release Scaling

Often difficult to scale wind tunnel tests to flight tests (Marshall, 1977)
- Forces due to pressure and shear scale with area ratio
- Weight scales with volume ratio
- Froude scaling works for incompressible (but not compressible) flows

Heavy Mach scaling
- Often increase wind tunnel model density (e.g., weighted with lead)
- Trajectory information attained
- Conservative for scale-up
- Generally preferable to light Mach scaling

Light Mach scaling
- Ejector force common, sometimes used for moments/store dynamics

Large-scale tunnel tests are generally preferred.
Store Release Method

One may minimize stagnation pressure for supersonic freedrop tests (Marshall, 1977)
 • Instead of raising material density for tunnel models
 • Vacuum chamber at tunnel exit
 • Can pose an added challenge for drop testing

Our approach utilized ice models released at Mach 3
 • Stagnation pressures from 4 psia up to 20 psia
 • Effectively changes “scale” without changing model

Small tunnel (2.5” by 2.5” cross-section)
 • WICS bay (scaled down by 0.375) to L=6.75” and D=W=1.5”

CFD used to compare to (and extend) experimental results using sphere-shaped stores
 • Using a sphere greatly simplifies scaling
OVERFLOW 2.1

- Overset solver with 6-DOF relative motion capability
- Background grids from Dr. Robert Nichols
 - Assistance from Maj. Andrew Lofthouse and CDR Neal Kraft (US Naval Academy)
- Capabilities
 1) Overset structured grids
 2) Used extensively for unsteady/turbulent flow
 3) Robust solver with current numerical methods and turbulence modeling
- Other keys to success
 - Proper non-dimensionalization
 - Management of overset grids, blanked-out regions/X-rays, fringe/donors/orphans
OVERFLOW 2.1 Settings

- Numerical Method
 - Hartax Lax van Leer Contact (HLLC) upwind scheme with van Albada flux limiters
 - 5th-order spatial flux algorithm
 - Symmetric Successive Over-Relaxation (SSOR) scheme
 - 2nd-order time with Newton sub-iterations used on temporal terms

- Turbulence Model
 - Delayed Detached Eddy Simulation/ Shear Stress Transport Hybrid RANS/LES model
 - RANS in boundary layer
 - Time step of 5 *10^-6 seconds
CFD Methodology

• Weapons Internal Carriage and Separation (WICS) bay (Nichols, 2008)
• Two overlapping C-type grids (Yin and Yang) set up about the sphere [after Kageyama and Sato (2004)].

<table>
<thead>
<tr>
<th>Block</th>
<th>Name</th>
<th>Cells</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate</td>
<td>5600000</td>
<td>351x201x81</td>
</tr>
<tr>
<td>2</td>
<td>Bay</td>
<td>1920000</td>
<td>201x81x121</td>
</tr>
<tr>
<td>3</td>
<td>Yin</td>
<td>140000</td>
<td>41x71x51</td>
</tr>
<tr>
<td>4</td>
<td>Yang</td>
<td>140000</td>
<td>41x71x51</td>
</tr>
</tbody>
</table>
CFD Methodology

- Grid sizing
- Grid relative movement
Bay/“Yin” Grid Overlap

The AFIT of Today is the Air Force of Tomorrow.
CFD Parameters

The AFIT of Today is the Air Force of Tomorrow.

<table>
<thead>
<tr>
<th>Run</th>
<th>CT1B</th>
<th>CT4B</th>
<th>CT2B</th>
<th>CT3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_T (Psia)</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Re_{ft} (million)</td>
<td>0.64</td>
<td>1.93</td>
<td>0.32</td>
<td>0.16</td>
</tr>
<tr>
<td>Δt (sec)</td>
<td>5.0×10^{-6}</td>
<td>5.0×10^{-6}</td>
<td>5.0×10^{-6}</td>
<td>5.0×10^{-6}</td>
</tr>
<tr>
<td>M</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>$Re_{gridunit}$</td>
<td>20000</td>
<td>60300</td>
<td>10000</td>
<td>5030</td>
</tr>
</tbody>
</table>
Tunnel and Test Section

- Supersonic (M= 2.94) variable density blowdown tunnel
- Two high-speed cameras
 - One conventional and one with Schlieren visualization setup
- Piezo-resistive pressure transducers
Model Fabrication

The AFIT of Today is the Air Force of Tomorrow.

(a) (b) (c)
(d) (e) (f)
Test Conditions

The AFIT of Today is the Air Force of Tomorrow.

<table>
<thead>
<tr>
<th>P\textsubscript{T,sc} (Psia)</th>
<th>4</th>
<th>12</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>T\textsubscript{T,sc} (°R)</td>
<td>536</td>
<td>540</td>
<td>544</td>
</tr>
<tr>
<td>P\textsubscript{∞} (lb/ft2)</td>
<td>17</td>
<td>52</td>
<td>86</td>
</tr>
<tr>
<td>V\textsubscript{∞} (ft/s)</td>
<td>2021</td>
<td>2027</td>
<td>2034</td>
</tr>
<tr>
<td>ρ\textsubscript{∞} (slug/ft3)</td>
<td>5.11x10-5</td>
<td>15.2x10-5</td>
<td>25.1x10-5</td>
</tr>
<tr>
<td>Re\textsubscript{ft} (million)</td>
<td>0.65</td>
<td>1.93</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Results and Analysis
Frequency Spectra

The AFIT of Today is the Air Force of Tomorrow.

- Experimental data shows that resonant frequency is essentially independent of pressure.
- Consistent with literature
- Low signal-to-noise ratio for low pressure data.
CFD/EFD Spectra

The AFIT of Today is the Air Force of Tomorrow.

- Computational spectral data is comparable but not a precise match to experimental spectra for a clean cavity.
- Based on 17,000 iterations (Welch’s method)
The AFIT of Today is the Air Force of Tomorrow.

CFD/EFD Visualization

Shear Layer EFD/CFD
16000 Hz Capture
30 Hz Playback
2000 Slower

FASTCAM-X 1280PC...
320 x 32
Start
16000 fps
frame: 1
+00:00:00.000000sec

Run 630C3
M = 2.94
Sehleren
20 Psia Stag Press

Run CT11B_XL
M = 3
Centerline
Density
4 Psia Stag Press
Cavity Flow: Stationary Sphere
Sphere Drop (4 psia)

The AFIT of Today is the Air Force of Tomorrow.
Sphere Drop (12 psia)
Sphere Drop CFD

The AFIT of Today is the Air Force of Tomorrow.
Sphere Drop Overlay

The AFIT of Today is the Air Force of Tomorrow.

Sphere EFD/CFD
2000 Hz Capture
30 Hz Playback
4 Psia Stag Press
60x Slower

Run 529S4
M = 2.94
Schlieren

Run CT1B_D
M = 3
Centerline Density®
EFD/CFD Sphere Drop

The AFIT of Today is the Air Force of Tomorrow.
CFD Sphere Drop

Run CT2B_D
2 Psia Stag Press

Run CT3B_D
1 Psia Stag Press

Sphere CFD
Mach 3
Coord: Centerline
Color: Density*

The AFIT of Today is the Air Force of Tomorrow.
View of Recirculation

The AFIT of Today is the Air Force of Tomorrow.
Mk-82 Shaped Store

The AFIT of Today is the Air Force of Tomorrow.
Sphere Separation

The AFIT of Today is the Air Force of Tomorrow.

4 Psia Stag Press
2000 Hz Capture Rate
30 Hz Playback
Sphere Separation

The AFIT of Today is the Air Force of Tomorrow.

12 Psia Stag Press
2000 Hz Capture Rate
30 Hz Playback
Mk-82/Spoiler Combination

The AFIT of Today is the Air Force of Tomorrow.
Summary

• OVERFLOW 2.1 used to compare to Mach 3 store separation events for spheres
• “Reasonable” correlation between predicted and measured Rossiter tones
• Successfully demonstrated the capability to conduct freedrop testing at Mach 3 in the AFIT supersonic tunnel
• Very good matching of the sphere dynamics between experiment and CFD results.
Flow Control
Passive Flow Control

- Tab Design
- Short Sawtooth (SST): 1δ
- Long Sawtooth (LST): 2δ
Spoiler Spectra

The AFIT of Today is the Air Force of Tomorrow.
Sphere Heavy Mach Scaling

Sphere Drop
40k Release
Mach 3

Titanium
Rubber
Pine
Spoiler Spectra

The AFIT of Today is the Air Force of Tomorrow.
Outline

The AFIT of Today is the Air Force of Tomorrow.

Mk-82 Model
Mk-82 Model

- 1/20th
- Ogive nose/conical fin
Mk-82 Shaped Store
Scaling Laws Applied
Heavy Mach Scaling

- Test gravity = 32.2 ft/s² $\left(\frac{g'}{g} = 1 \right)$
- V'_∞
- Translation – Representative
- Rotation – Too large

\[
m' = m \left(\frac{q'_\infty}{q_\infty} \right) \lambda^2
\]

\[
I' = I \left(\frac{q'_\infty}{q_\infty} \right) \lambda^4
\]
Sphere Heavy Mach Scaling

The AFIT of Today is the Air Force of Tomorrow.

- 40k release, Mach 3

<table>
<thead>
<tr>
<th>$P_{T,sc}$ (Psia)</th>
<th>1</th>
<th>4</th>
<th>12</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_∞'/q_∞</td>
<td>0.011</td>
<td>0.044</td>
<td>0.13</td>
<td>0.22</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>550</td>
<td>138</td>
<td>46</td>
<td>28</td>
</tr>
<tr>
<td>Density (lb/ft3)</td>
<td>225</td>
<td>69</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>Material</td>
<td>Titanium</td>
<td>Rubber</td>
<td>Pine</td>
<td>Balsa</td>
</tr>
</tbody>
</table>
Heavy Mach Scaling

The AFIT of Today is the Air Force of Tomorrow.

- **1 Psia stagnation pressure**

<table>
<thead>
<tr>
<th>Simulated Altitude (ft)</th>
<th>20k</th>
<th>40k</th>
<th>57625</th>
<th>60k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q'{\infty} / q{\infty})</td>
<td>0.0044</td>
<td>0.011</td>
<td>0.0248</td>
<td>0.028</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>2813</td>
<td>1136</td>
<td>500.0</td>
<td>436</td>
</tr>
<tr>
<td>(I_{yy}) (lb·ft²)</td>
<td>218</td>
<td>88</td>
<td>38.7</td>
<td>34</td>
</tr>
</tbody>
</table>

- **4 Psia stagnation pressure**

<table>
<thead>
<tr>
<th>Simulated Altitude (ft)</th>
<th>20k</th>
<th>27905</th>
<th>40k</th>
<th>60k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q'{\infty} / q{\infty})</td>
<td>0.018</td>
<td>0.0248</td>
<td>0.044</td>
<td>0.11</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>703</td>
<td>500.0</td>
<td>284</td>
<td>109</td>
</tr>
<tr>
<td>(I_{yy}) (lb·ft²)</td>
<td>54</td>
<td>38.7</td>
<td>22</td>
<td>8</td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

The AFIT of Today is the Air Force of Tomorrow.

• Good correlation between predicted and measured Rossiter tones
• Pretty reasonable comparison of pressure spectra between experimental runs and CFD model
• Successfully demonstrated the capability to conduct quick, inexpensive freedrop testing at Mach 3 in the AFIT lab
• Good matching of the sphere dynamics between experiment and CFD results.
 • Demonstrated ability to validate the CFD run with in-house experiments.
Conclusions (cont.)

The AFIT of Today is the Air Force of Tomorrow.

• Determined that the spoiler design used detuned the Rossiter modes in the cavity yet significantly raised the broadband tones
• Demonstrated the positive influence of the spoiler on the separation from a spherical store from a cavity
• Demonstrated the capability to conduct ice freedrop testing of shapes representative of actual stores
• Developed the case that if the stagnation pressure could be sufficiently reduced, heavy Mach scaling laws can be attained with this freedrop test method.
Acknowledgements

• Sponsor – AFRL Air Vehicles
 - Jim Grove
 - Rudy Johnson

• ENY Labs
 - Jay Anderson
 - John Hixenbaugh
 - Chris Zickefoose
 - Sean Miller

• Model Shop
 - Brian Crabtree
 - Chris Harkless

• CFD support
 - Dr. Robert Nichols
 - CDR Neal Kraft
 - Dave Doak
 - Maj Andrew Lofthouse
Questions?

The AFIT of Today is the Air Force of Tomorrow.
Cavity Flow

The AFIT of Today is the Air Force of Tomorrow.
EFD/CFD Sphere Drop

Sphere EFD/CFD
2000 Hz Capture
30 Hz Playback
12 Psia Stag Press
60x Slower

Run 601S2
M = 2.94
Schlieren

Run CT4B_D
M = 3
Centerline Density
HIFEX

- Long Range Strike Aircraft
- High speed separation
- Active flow control devices
- Acoustic testing
- Separation testing
- Full-scale sled tests
Release Mechanism

The AFIT of Today is the Air Force of Tomorrow.
Scaling Laws

The AFIT of Today is the Air Force of Tomorrow.

- Governing equations

\[
\frac{\ddot{Z}}{g} = 1 - \left[C_{N_{\alpha}} \left(\theta + \frac{\dot{Z}}{V_{\infty}} + \Delta \alpha \right) \cos \theta - C_A \sin \theta \right] \left(\frac{qS}{mg} \right) + \left(\frac{F_{ej}}{mg} \right) \cos \theta
\]

\[
\dot{\theta} = \left[C_{m_{\alpha}} \left(\theta + \frac{\dot{Z}}{V_{\infty}} + \Delta \alpha \right) \right] + C_{m_{q}} \left(\frac{d\dot{\theta}}{2V_{\infty}} \right) \left(\frac{qSd}{I} \right) + \left(\frac{F_{ej}X_{ej}}{I} \right)
\]

- Freedrop scaling laws*

 - Aerodynamic scaling → \[M_{\infty}' = M_{\infty} \]

 - Dynamic scaling → \[M_{\infty}' = M_{\infty} \sqrt{\lambda \frac{g'}{g} \frac{T_{\infty}'}{T_{\infty}}} \]

*Marshall (1977)
Dynamic Scaling

The AFIT of Today is the Air Force of Tomorrow.

- \(M_{aero} \neq M_{dynamic} \)
- Subsonic
 - Froude scaling
- Transonic/Supersonic
 - Heavy Mach scaling
 - Light Mach scaling

\[
Z' = Z\lambda \\
\theta' = \theta \\
m' = m\left(\frac{\rho'_\infty}{\rho_\infty}\right)\left(\frac{V'_\infty}{V_\infty}\right)^2 \lambda^2 \left(\frac{g}{g'}\right) \\
I' = I\left(\frac{\rho'_\infty}{\rho_\infty}\right)\left(\frac{V'_\infty}{V_\infty}\right)^2 \lambda^4 \left(\frac{g}{g'}\right) \\
F_{ej}' = m\left(\frac{\rho'_\infty}{\rho_\infty}\right)\left(\frac{V'_\infty}{V_\infty}\right)^2 \lambda^2 \\
X_{ej}' = X\lambda \\
V'_\infty = V_\infty\sqrt{\lambda \left(\frac{g'}{g}\right)} \\
t' = t\lambda \left(\frac{V'_\infty}{V_\infty}\right)
\]
Heavy Mach Scaling

The AFIT of Today is the Air Force of Tomorrow.

- Test gravity = 32.2 ft/s² \(\left(\frac{g'}{g} = 1 \right) \)
- \(V_\infty' \)
- Translation – Representative
- Rotation – Too large

\[
m' = m \left(\frac{q'_\infty}{q_\infty} \right) \lambda^2
\]

\[
I' = I \left(\frac{q'_\infty}{q_\infty} \right) \lambda^4
\]
Light Mach Scaling

The AFIT of Today is the Air Force of Tomorrow.

- Augmented gravity \((g' \neq g)\)
- Translation – Vertical displacement under predicted
- Rotation – Representative

\[
m' = m \left(\frac{\rho'}{\rho_\infty} \right) \lambda^3
\]

\[
I' = I \left(\frac{\rho'}{\rho_\infty} \right) \lambda^5
\]
Sphere Freedrop

- Simple shape
- Consistent mass properties
- No pitch considerations
- Tractable grid generation